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In this paper we first of all review the morphology and structure of the myocardium and discuss

the main features of the mechanical response of passive myocardium tissue, which is an orthotropic

material. Locally within the architecture of the myocardium three mutually orthogonal directions

can be identified, forming planes with distinct material responses. We treat the left ventricular my-

ocardium as a non-homogeneous, thick-walled, nonlinearlyelastic and incompressible material and

develop a general theoretical framework based on invariants associated with the three directions.

Within this framework we review existing constitutive models and then develop a structurally based

model that accounts for the muscle fibre direction and the myocyte sheet structure. The model is

applied to simple shear and biaxial deformations and a specific form fitted to the existing (and some-

what limited) experimental data, emphasizing the orthotropy and the limitations of biaxial tests. The

need for additional data is highlighted. A brief discussionof issues of convexity of the model and

related matters concludes the paper.

Keywords: Myocardium; constitutive modelling; orthotrop y; muscle fibres; myocyte sheet

structure

1. Introduction

Of central importance for the better understanding of the fundamental mechanisms under-

lying ventricular mechanics are (i) realistic descriptions of the 3D geometry and structure

of the myocardium, (ii) continuum balance laws and boundaryconditions, and, most im-

portantly, (iii) constitutive equations that characterize the material properties of the my-

† Author for correspondence (holzapfel@TUGraz.at).
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2 G. A. Holzapfel and R. W. Ogden

ocardium, including their spatial and temporal variations, together with statistical parame-

ter estimation and optimization and validation. In order tocharacterize the material proper-

ties it is essential to have available comprehensive force–deformation data from a range of

different deformation modes. In particular, a combinationof biaxial test data with different

loading protocols and shear test data at different specimenorientations is required in order

to capture adequately the direction-dependent nonlinear material response.

The purpose of the present paper is to develop a general theoretical framework within

the context of nonlinear elasticity theory that takes account of the structural features of the

myocardium and its orthotropic properties. Within that framework we then consider spe-

cific models for the myocardium in order to characterize its passive mechanical response.

There are several models of the elasticity of the myocardiumavailable in the literature,

including isotropic models (see, for example, Demiray, 1976), transversely isotropic mod-

els (for example, Humphrey & Yin, 1987; Humphreyet al., 1990; Guccioneet al., 1991;

Costaet al., 1996), and, more recently, orthotropic models (for example, Costaet al., 2001;

Hunteret al., 1997; Schmidet al., 2006). We review these and several others briefly in§4.

For a recent account of modelling aspects of the mechanics ofthe heart and arteries we

refer to the forthcoming edited volume by Holzapfel & Ogden (2009a).

One problem in developing an adequate constitutive model isthe shortage of experi-

mental data suitable for detailed parameter estimation in specific functional forms. Early

contributions to gathering such data are contained in the work of Demer & Yin (1983)

and Yinet al. (1987) in which data from biaxial tests were obtained. However, as we shall

emphasize later, data from biaxial tests alone are not enough to characterize the passive

response of myocardium since such data suggest that the material is transversely isotropic.

That this is not the case has been demonstrated clearly in themore recent work by Dokos

et al. (2002), which, on the basis of shear tests conducted on cube-shaped specimens from

different orientations within the myocardium, highlighted the orthotropic behaviour of the

material. It remains the case, however, that there is a need for more comprehensive sets of

data to be obtained.

In §2 we outline the key features of the morphology and structureof the myocardium

and then describe the passive mechanical response of myocardial tissue on the basis of

the available biaxial and shear test data. Against this background we then construct, in§3,

a general framework for the elastic strain-energy functionbased on the use of invariants

that are related to the myocardium structure. This framework embraces most, if not all,

of the elasticity-based constitutive models for the passive myocardium that have appeared

in the literature to date. Next, in§4, as mentioned above, we review the existing models

within this framework. In§5, guided by data from shear and biaxial tests, we develop an

appropriately specialized form of the general strain-energy function from§3. This is then

Article submitted to Royal Society



Constitutive modelling of passive myocardium 3

specialized further by the introduction of specific functional forms for the dependence

of the energy function on the restricted set of invariants that it includes. The model so

constructed is then evaluated against the considered shearand biaxial data and values of

the material constants it contains are obtained by curve fitting. The general features of the

shear data of Dokoset al. (2002) are reproduced by using six material constants, while

eight constants are needed to recover finer details of the data. To fit the biaxial data a

transversely isotropic specialization of the model suffices to give a reasonable fit to the

data of Yinet al. (1987) and only four material constants are needed. This highlights the

point already alluded to that biaxial tests alone are not sufficient to extract the orthotopic

nature of the tissue and should not therefore be used in isolation.

In §6 we examine the form of strain-energy function constructedwith reference to in-

equalities that ensure ‘physically reasonable response’,including the monotonicity of the

stress deformation behaviour in uniaxial tests and notionsof convexity and strong ellip-

ticity in 3D. These all require, in particular, that the materials constants included in the

various terms contributing to the strain-energy are positive, which is consistent with the

values obtained in fitting the data. Finally,§7 is devoted to a concluding discussion.

2. Morphology, structure and typical mechanical behaviourof the

passive myocardium

(a) Morphology and structure

The human heart consists of four chambers, namely the right and left atria, which re-

ceive blood from the body, and the left and rightventricles, which pump blood around the

body. For a detailed description of the individual functionalities of these four chambers, see

Katz (1977). There is still an ongoing debate concerning thestructure of the heart (Gilbert

et al., 2007), and, in particular, the anisotropic cardiac microstructure. One approach de-

scribes the heart as a single muscle coiled in a helical pattern, while the other approach

considers the heart to be a continuum composed of laminar sheets, an approach we are

adopting in the present work.

The left ventricle has the largest volume of the four chambers and serves the particular

purpose of distributing blood with a higher pressure than the right ventricle. As a conse-

quence of the need to support higher pressure, the wall thickness of the left ventricle is

larger than that of the right ventricle. The wall thickness and curvature of the left ventricle

vary spatially; it is thickest at the base and at the equator and thinnest at its apex. The wall

thickness and curvature also vary temporally through the cardiac cycle. The left ventricular

wall may be regarded as a continuum of myocardial fibres, witha smooth transmural vari-

Article submitted to Royal Society
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Figure 1. Schematic diagram of: (a) the left ventricle and a cut out from the equator; (b) the structure

through the thickness from the epicardium to the endocardium; (c) five longitudinal–circumferential

sections at regular intervals from 10–90% of the wall thickness from the epicardium showing the

transmural variation of layer orientation; (d) the layeredorganization of myocytes and the collagen

fibres between the sheets referred to a right-handed orthonormal coordinate system with fibre axisf0,

sheet axiss0 and sheet-normal axisn0; (e) a cube of layered tissue with local material coordinates

(X1, X2, X3) serving the basis for the geometrical and constitutive model.
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Constitutive modelling of passive myocardium 5

ation of the fibre orientations. It is modelled reasonably well as a thick-walled ellipsoid of

revolution that is truncated at the base, as depicted in figure 1(a).

The heart wall consists of three distinct layers: an inner layer (theendocardium), a

middle layer (themyocardium), and an outer layer (theepicardium). The endocardium lines

the inside of the four chambers and it is a serous membrane, with approximate thickness

100µm, consisting mainly of epimysial collagen, elastin and a layer of endothelial cells,

the latter serving as an interfacial layer between the wall and the blood. The protective

epicardium is also a membrane with thickness of the order of100µm and consists largely

of epimysial collagen and some elastin.

In this paper we focus attention on the myocardium of the leftventricle. The ventricular

myocardium is the functional tissue of the heart wall with a complex structure that is well

represented in the quantitative studies of LeGriceet al. (1995, 1997), Younget al. (1998),

and Sandset al.(2005). The left ventricular wall is a composite of layers (or sheets) of par-

allel myocytes which are the predominant fibre types, occupying about 70% of the volume.

The remaining 30% consists of various interstitial components (Frank & Langer, 1974),

while only 2–5% of the interstitial volume is occupied by collagen arranged in a spatial

network that forms lateral connections between adjacent muscle fibres, with attachments

near the z-line of the sarcomere. Figure 1(b) illustrates the change of the three-dimensional

layered organization of myocytes through the wall thickness from the epicardium to the

endocardium. In addition, figure 1(b) displays views of five longitudinal–circumferential

sections at regular intervals through the left ventricularwall (at 10–90% of the wall thick-

ness from the epicardium). The sections are parallel to the epicardial surface and are dis-

played separately in figure 1(c). As can be seen, the muscle fibre orientations change with

position through the wall; in the equatorial region the predominant muscle fibre direction

rotates from about+50◦ to +70◦ (sub-epicardial region) to nearly0◦ in the mid-wall re-

gion to about−50◦ to −70◦ (sub-endocardial region) with respect to the circumferential

direction of the left ventricle. It should be emphasized that the layers are not in general

parallel to the vessel walls, as can be appreciated from figure 1(b) even though it is often

assumed in the literature that they are so parallel.

Figure 1(d) is a schematic of the layered organization of myocytes with a fine weave

of endomysial collagen surrounding the myocytes and lateral connections, which are 120

to 150 nm long, between adjacent myocytes. In addition, networks of long perimysial fi-

bres span cleavage planes and connect adjacent muscle layers, which are3–4 cells thick.

The perimysial fibres are most likely to be the major structural elements of the extracel-

lular matrix. They are coiled and have a ratio of contour length to end-to-end distance of

approximately 1.3 in the unloaded state of the ventricle (MacKennaet al., 1996). Some

branching between adjacent layers is evident although in many instances branching is rel-
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6 G. A. Holzapfel and R. W. Ogden

atively sparse so that the inter-layer separation can be significant. Capillaries with a fairly

dense and uniform distribution within the myocardial layers and on their surfaces are also

present, as indicated in figure 1(d). Understanding of the transmural variation of the my-

ocardial tissue structure is important since this specific architecture is responsible for the

resistance of the heart to bending and twisting during the cardiac cycle.

The layered organization is characterized by a right-handed orthonormal set of basis

vectors and an associated orthogonal curvilinear system ofcoordinates. The local fixed set

of (unit) basis vectors consists of thefibre axisf0, which coincides with the muscle fibre

orientation, thesheet axiss0 defined to be in the plane of the layer perpendicular to the

fibre direction (sometimes referred to as the cross-fibre direction), and thesheet-normal

axis n0, defined to be orthogonal to the other two. Figure 1(e), whichshows a cube of

layered tissue with the local material coordinates(X1, X2, X3), serves as a basis for the

proposed geometrical and constitutive model. In what follows we shall use the labels f, s

and n to refer to fibre, sheet and normal, respectively. We shall also use the pairs fs, fn and

sn to refer to the fibre-sheet, fibre-normal and sheet-normalplanes.

(b) Mechanical behaviour of the passive myocardium

The passive myocardium tissue is an orthotropic material having three mutually or-

thogonal planes with distinct material responses, as the results of Dokoset al.(2002) from

simple sheartests on passive ventricular myocardium from pig hearts clearly show. This

is illustrated in figure 2, which is based on Fig. 6 from the latter paper. It should be noted,

however, that the ordering of the labels fn and fs in Fig. 6 of Dokoset al.(2002) is inconsis-

tent with the data shown in the other figures in that paper. To correct this we have switched

the roles of fs and fn in figure 2 compared with Fig. 6 of Dokoset al. (2002). This point is

discussed further in§5(d). The tissue exhibits a regionally-dependent and time-dependent,

highly nonlinear behaviour with relatively low hysteresis, and also directionally dependent

softening as the strain increases. From figure 2 it can be seenthat ventricular myocardium

is least resistant to simple shear in the fn and sn planes for shear in the f and s directions,

respectively (the lowest curve in figure 2 above the positiveshear axis). It is most resistant

to shear deformations that produce extension of the myocyte(f) axis in the fs and fn planes

(the upper two curves for positive shear). Note, however, that for the planes containing

the fibre direction the shear responses (fs) and (fn) in the sheet and normal directions are

different. Similarly, for the planes containing the sheet direction the responses (sf) and (sn)

in the fibre and normal directions are different. On the otherhand, the shear responses in

the planes containing the normal direction are the same for the considered specimen.

The passivebiaxialmechanical properties of non-contractingmyocardium are described

Article submitted to Royal Society
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Figure 2. Shear stress versus amount of shear for simple shear tests on a cube of a typical myocardial

specimen in the fs, fn and sn planes, where the(ij) shear refers to shear in thej direction in theij

plane, wherei 6= j ∈ {f, s, n}. Note that the(ij) shear entails stretching of material line elements

that are initially in thei direction. The data show clearly the distinct responses forthe three planes

and hence the orthotropy of the material. In addition, it illustrates the highly nonlinear response and

the viscoelastic effect evidenced by the relatively small hysteresis between loading and unloading.

For the planes containing the f direction the shear responses (fs) and (fn) in the s and n directions are

different; for the planes containing the s direction the responses (sf) and (sn) in the f and n directions

are also different; the shear responses (nf) and (ns) in the planes containing the n direction are the

same for the considered specimen. Adapted from Dokoset al. (2002).

by Demer & Yin (1983), Yinet al.(1987), Smaill & Hunter (1991) and Novaket al.(1994),

for example. To illustrate the results we show in figure 3 representative stress-strain data

which we extracted from Fig. 4 in Yinet al. (1987). For three different loading protocols

for biaxial loading in the fs plane of a canine left ventriclemyocardium, figure 3(a) shows

the second Piola–Kirchhoff stressSff in the fibre direction as a function of the Green–

Lagrange strainEff in the same direction, while figure 3(b) shows the corresponding plots

for the sheet direction (Sss againstEss). The three sets of data in each of (a) and (b) cor-

respond to constant strain ratiosEff/Ess. Just as for the shear response the biaxial data

indicate high nonlinearity and anisotropy. Data for unloading were not given in Yinet al.

(1987).

Article submitted to Royal Society
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Figure 3. Representative stress-strain data for three different loading protocols for biaxial loading

in the fs plane of canine left ventricle myocardium: (a) stress Sff against strainEff in the fibre

direction; (b) stressSss against strainEss in the sheet (cross-fibre) direction. Note thatEij and

Sij are the components of the Green–Lagrange strain tensor and the second Piola–Kirchhoff stress

tensor, respectively. The three sets of data correspond to constant strain ratiosEff/Ess equal to 2.05

(triangles), 1.02 (squares), 0.48 (circles). The data are extracted from the two upper plots in Fig. 4 of

Yin et al. (1987).

As with many other soft biological tissues, the myocardium can be regarded as an in-

compressible material. This has been established in experiments by Vossoughiet al.(1980),

who subjected tissue specimens to various levels of hydrostatic stress. They recorded the

associated volumetric strains and concluded that the myocardial tissue is essentially in-

compressible.

According to experimental data obtained from equatorial slices of the left ventricular

wall of potassium arrested rat hearts it is clear that the unloaded myocardium is residu-

ally stressed (Omens & Fung, 1990), in particular that thereis compressive circumferential

residual stress in the endocardium of the left ventricle andtensile circumferential residual

stress in the epicardium; see also Costaet al.(1997), who suggested that the residual stress

in the left ventricle is associated with pre-stretching in the plane of the myocardial sheets.

According to Costaet al.(1997), there is relatively little residual stress along the muscle fi-

bre direction in the midwall and there are also residual stresses normal to the fibre direction;

Article submitted to Royal Society



Constitutive modelling of passive myocardium 9

the perimysial fibre network may be a primary residual stressbearing structure in passive

myocardium. Residual stresses are thought to arise during growth and remodelling (see, for

example, Rodriguezet al., 1994 and Rachev, 1997). Residual stresses have an important

influence on the stress pattern in the typical physiologicalstate. For example, incorpora-

tion of a residual stress distribution may reduce tensile endocardial stress concentrations

predicted by ventricular wall models (Guccioneet al., 1991). The importance of residual

stresses has also been recognized in arterial wall mechanics (see, for example, Holzapfel

et al., 2000; Holzapfel & Ogden, 2003). However, three-dimensional residual stresses are

very difficult to quantify and hence their modelling must be treated with caution.

Although the myocardium tissue appears to be viscoelastic this aspect of its behaviour

is not important from the point of view of mechanical modelling on the time scale of

the cardiac cycle, which is short compared with the relaxation time of the viscoelastic

response. Indeed, modelling of the viscoelasticity has received little attention in the litera-

ture, not least because there are very few data available on the viscoelastic properties of the

tissue. An exception to this is the model of Huygheet al. (1991). Here, we treat the tissue

behaviour as elastic, with the characteristic features shown in figures 2 and 3.

It is therefore important to model the passive response of the left ventricular my-

ocardium as a non-homogeneous, thick-walled, incompressible, orthotropic nonlinearly

elastic material, and this is the approach we adopt in the present paper. Although residual

stresses are also important for the stress analysis of the composite myocardium it is first

necessary to develop a constitutive model that takes full account of the basic structure of

the material with respect to a stress-free reference configuration. Thus, we do not include

residual stresses in the constitutive model developed here, as was the case for the arterial

model constructed in Holzapfelet al. (2000).

3. Essential elements of continuum mechanics

(a) Kinematical quantities and invariants

The basic deformation variable for the description of the local kinematics is the defor-

mation gradientF, and we use the standard notation and convention

J = det F > 0. (3.1)

For an incompressible material we have the constraint

J = det F ≡ 1. (3.2)

Associated withF are the right and left Cauchy-Green tensors, defined by

C = FTF, B = FFT, (3.3)

Article submitted to Royal Society



10 G. A. Holzapfel and R. W. Ogden

respectively. Also important for what follows is the Green–Lagrange (or Green) strain

tensor, defined by

E =
1

2
(C − I ), (3.4)

whereI is the identity tensor. The principal invariants ofC (also ofB) are defined by

I1 = trC, I2 =
1

2
[I2

1 − tr(C2)], I3 = det C, (3.5)

with I3 = J2 = 1 for an incompressible material. These areisotropic invariants. For more

details of the relevant material from continuum mechanics we refer to Holzapfel (2000)

and Ogden (1997).

If the material has a preferred direction in the reference configuration, denoted by the

unit vectora0, this introduces anisotropy, specifically transverse isotropy, and with it come

two additional (transversely isotropic) invariants (or quasi-invariants) defined by

I4 = a0 · (Ca0), I5 = a0 · (C
2a0). (3.6)

Note that these are unaffected by reversal of the direction of a0. If one wishes to distinguish

between the directionsa0 and−a0 as far as the material response is concerned then yet

another invariant would be needed. Here, however, we do not consider this possibility.

We refer to Spencer (1984) for background information on theinvariant theory of fibre-

reinforced materials.

If there are two preferred directions, the second denotedb0, this introduces the invari-

ants

I6 = b0 · (Cb0), I7 = b0 · (C
2b0) (3.7)

associated with it and, additionally, a coupling invariant, denoted byI8, which we define

here by

I8 = a0 · (Cb0) = b0 · (Ca0). (3.8)

Note that this changes sign if eithera0 or b0 (but not both) is reversed and is not therefore

strictly invariant in this sense. However, it is more convenient in what follows to use this

rather than the strictly invariant formI2
8 or I8a0 · b0, and to allow for this distinction in the

form of the constitutive law. Note that ifa0 ·b0 = 0 then only the first of these two options

is appropriate, but in this caseI8 depends onI1, . . . , I7, specifically

I2

8 = I2 + I4I6 + I5 + I7 − I1(I4 + I6), (3.9)

a formula given in Merodio & Ogden (2006). Equation (3.9) determines only the magnitude

of I8 in terms of the other invariants, not its sign.

Article submitted to Royal Society



Constitutive modelling of passive myocardium 11

(b) Strain-energy function and stress tensors

Here we consider the material properties to be described by astrain-energy functionΨ,

which is measured per unit reference volume. This depends onthe deformation gradientF

throughC (equivalently throughE), which ensures objectivity. For such an elastic material

the Cauchy stress tensorσ is given by the formulas

Jσ = F
∂Ψ

∂F
= F

∂Ψ

∂E
FT (3.10)

for a compressible material (forΨ treated as a function ofF andE, respectively), which

are modified to

σ = F
∂Ψ

∂F
− pI = F

∂Ψ

∂E
FT

− pI (3.11)

for an incompressible material, in which case we have the constraintJ = 1 (equivalently

I3 = J2 = 1) and this is accommodated in the expression for the stress bythe Lagrange

multiplier p.

For an elastic material possessing a strain-energy function Ψ that depends on a list of

invariants, sayI1, I2, . . . , IN for someN , equations (3.10) and (3.11) may be expanded in

the forms

Jσ = F
N

∑

i=1

ψi

∂Ii
∂F

, σ = F
N

∑

i=1,i6=3

ψi

∂Ii
∂F

− pI , (3.12)

respectively, where we have introduced the notation

ψi =
∂Ψ

∂Ii
, i = 1, 2, . . . , N, (3.13)

with i = 3 omitted from the summation for the incompressible materialandI3 omitted

from the list of invariants inΨ in this case. Note that∂Ii/∂F = (∂Ii/∂E)FT in terms of the

Green–Lagrange strain tensor. Note that the second Piola–Kirchhoff stress tensorS, whose

components were referred to in connection with figure 3, is given in terms of the Cauchy

stress tensor via the simple formulaS = JF−1
σF−T, using (3.10) for a compressible

material and (3.11) for an incompressible material withJ = 1. Explicitly, with E as the

independent variable, we have simply

S =
∂Ψ

∂E
, S =

∂Ψ

∂E
− p(I + 2E)−1 (3.14)

for compressible and incompressible materials, respectively.

4. Review of existing constitutive models

For references to early work concerned with constitutive modelling of the myocardium we

refer to papers by Yin (1981) and Humphrey & Yin (1987). Several of the earlier models
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12 G. A. Holzapfel and R. W. Ogden

were based on linear isotropic elasticity, which is entirely inappropriate in view of the dis-

cussion in§2(b). Equally, the early nonlinear models do not capture allthe features alluded

to. This is the case for certain invariant-based models, including the isotropic exponential

form based on the invariantI2 (Demiray, 1976).

(a) Transversely isotropic models

A number of transversely isotropicmodels have been proposed. These include the

model of Humphrey & Yin (1987), which is the sum of two exponentials, one inI1 and

one inI4, specifically

Ψ = c{exp[b(I1 − 3)] − 1} +A{exp[a(
√

I4 − 1)2] − 1}, (4.1)

and contains four material parameters,c, b, A, a. This was the first anisotropic invariant-

based model that took account of the fibre structure. Anothertransversely isotropic model,

also based on the invariantsI1 andI4, was constructed by Humphreyet al. (1990). This

has the form

Ψ = c1(
√

I4−1)2+c2(
√

I4−1)3+c3(I1−3)+c4(I1−3)(
√

I4−1)+c5(I1−3)2, (4.2)

and involves five material constantsc1, c2, . . . , c5, values of which were obtained by No-

vak et al. (1994) from biaxial test data from the middle portion of the interventricular

septum and the inner, middle and outer layers of the lateral passive canine left ventricle

wall. As discussed in§2, it only subsequently became clear that the myocardium is not a

transversely isotropic material (see, for example, LeGriceet al., 1995).

The models referred to above are based on the assumption of incompressibility, but

the shortcoming referred to above also applies to the compressible transversely isotropic

model due to Kerckhoffset al. (2003), which has the form

Ψ = a0[exp(a1Î
2

1 + a2Î2) − 1] + a3[exp(a4E
2

ff) − 1] + a5(I3 − 1)2, (4.3)

and contains six material parametersa0, a1, . . . , a5, whereÎ1 andÎ2 are the principal in-

variants ofE andEff is the Green–Lagrange strain in the fibre direction. The invariantsÎ1

andÎ2 are related to the principal invariantsI1 andI2 of C defined in (3.5) by

Î1 =
1

2
(I1 − 3), Î2 =

1

4
(I2 − 2I1 + 3). (4.4)

The first term in (4.3) represents the isotropic component related to tissue shape change,

the second term relates to the extra stiffness of the material in the myofibre direction, while

the third term is related to volume changes.

Other transversely isotropic models, based on use of the components of the Green–

Lagrange strain tensor, were developed by Guccioneet al. (1991) and Costaet al. (1996),
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Constitutive modelling of passive myocardium 13

but again do not reflect the morphology discussed above. Theyare both special cases of

the orthotropic model of Costaet al. (2001) to be discussed below.

Some other models are structurally based. These include themodel of Horowitzet al.

(1988), which has the merit of being micro-mechanically motivated and inherently consid-

ers possible changes in the waviness of the fibres induced by the tissue strain. On the other

hand, because of the integrations involved in the constitutive model, it is not well suited

for numerical implementation. It is also effectively transversely isotropic.

The paper by Huygheet al.(1991) contains one of the few models that characterize the

passiveviscoelasticresponse of the myocardium. It regards the material as sponge-like and

treats it as a biphasic (fluid–solid) model based on the quasi-linear viscoelastic constitutive

model due to Fung (1993), Section 7.6, and, to our knowledge,is the only biphasic model

of the myocardium documented in the literature. The model has been implemented within

a finite element framework and applied to the left ventricle of a canine diastolic heart in

Huygheet al. (1992). Of interest here is the solid elastic phase, which isa transversely

isotropic model involving seven material parameters. However, the authors refer to it as

orthotropic. That it is transversely isotropic can be seen from equation(B8) in Appendix

B of Huygheet al. (1992) by noting that their strain-energy function is invariant under

interchange of the indices 1 and 2, and hence with respect to rotations about the 3-direction.

(b) Orthotropic models

Severalorthotropic models have been proposed in the literature. Some of these are

inappropriate for modelling myocardial tissue, includingthe Langevin eight-chain based

model of Bischoffet al. (2002), which, as pointed out by Schmidet al. (2008), does not

reflect the morphology of the myocardium.

In the remainder of this section we describe briefly three orthotropic models that have

similar features in that they are partly structurally based, relating to the fibre, sheet and

normal directions, and partly phenomenological. This is a prelude to the development, in

§5, of a general orthotropic invariant-based model, which includes these three models as

special cases.

Note that in the models listed under (i)–(iii) below the authors used the notationEij

with i, j ∈ {f, s, n}, and, in particular, althoughEij = Eji, they expressed the off-diagonal

terms in the form(Eij + Eji)/2, i 6= j. Here, for compactness, we simply express this as

Eij in each case.
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14 G. A. Holzapfel and R. W. Ogden

(i) Strain-energy function proposed by Costaet al.(2001)

The Fung-type exponential strain-energy function due to Costaet al.(2001) is given as

Ψ =
1

2
a(expQ− 1), (4.5)

where

Q = bffE
2

ff + bssE
2

ss + bnnE
2

nn + 2bfsE
2

fs + 2bfnE
2

fn + 2bsnE
2

sn, (4.6)

which has seven material parameters,a andbij , i, j ∈ {f, s, n}. Interpretations were given

for the parameters but specific values were not provided. As already mentioned, trans-

versely isotropic specializations of this model (with 5 material parameters) were used in

earlier papers by Guccioneet al. (1991) and Costaet al. (1996).

(ii) Fung-type model proposed by Schmidet al.(2006)

Another Fung-type model consisting of separate exponential terms for each component

Eij was introduced by Schmidet al.(2006) in order to decouple the effects of the material

parameters in the single exponential model (4.5), (4.6). With 12 material parameters, it is

given by

Ψ =
1

2
aff [exp(bffE

2

ff) − 1] +
1

2
afn[exp(bfnE

2

fn) − 1] +
1

2
afs[exp(bfsE

2

fs) − 1]

+
1

2
ann[exp(bnnE

2

nn) − 1] +
1

2
ans[exp(bnsE

2

ns) − 1] +
1

2
as[exp(bssE

2

ss) − 1].(4.7)

We mention in passing another model with 12 parameters, which also uses the compo-

nentsEij , i, j ∈ {f, s, n}. This is the tangent model introduced in Schmidet al. (2006);

see also Schmidet al. (2008). We do not consider this model here.

(iii) Pole-zero model proposed by Hunteret al.(1997)

Motivated by the (equi-)biaxial tension tests of Smaill & Hunter (1991), Hunteret al.

(1997) proposed the so-calledpole-zerostrain-energy function, which has the form

Ψ =
kffE

2

ff

|aff − |Eff ||
bff

+
kfnE

2

fn

|afn − |Efn||
bfn

+
knnE

2
nn

|ann − |Enn||
bnn

+
kfsE

2

fs

|afs − |Efs||
bfs

+
kssE

2
ss

|ass − |Ess||
bss

+
knsE

2
ns

|ans − |Ens||
bns

, (4.8)

with 18 material parameterskij , aij , bij i, j ∈ {f, s, n}, and with the different components

Eij separated similarly to (4.7). As mentioned in Nash (1998) itwas considered unlikely to

be suitable for other modes of deformation. Note that several different forms of this model

appear in various papers with or without appropriate modulus signs, and in some cases

with bij set equal to 2 for eachi, j pair, as in Schmidet al. (2006, 2008).
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The relative performance of the above orthotropic models infitting data of Dokoset al.

(2002) was evaluated in Schmidet al. (2008), and we discuss this briefly in§7.

5. A structurally-based model for the passive myocardium

Bearing in mind the fibre, sheet (cross-fibre) and sheet-normal (normal) directions specified

in figure 1(e) and the definition of the invariantI4 in (3.6)1 we now consider the invariant

I4 associated with each of these directions. We use the notations

I4 f = f0 · (Cf0), I4 s = s0 · (Cs0), I4 n = n0 · (Cn0), (5.1)

and note that

∑

i=f,s,n

I4 i = C : (f0 ⊗ f0 + s0 ⊗ s0 + n0 ⊗ n0) = C : I = I1. (5.2)

Thus, only three of the invariantsI4 f , I4 s, I4 n andI1 are independent, and in the functional

dependence of the strain energy we may omit one of these.

On the basis of the definition (3.6)2 we may also define invariantsI5 f , I5 s, I5 n for each

direction. We shall not need these here, but we note that theyare related byI5 f + I5 s +

I5 n = I2
1 − 2I2. Additionally, there are the coupling invariants associated with the pairs of

directions. In accordance with the definition (3.8) we may write

I8 fs = I8 sf = f0 · (Cs0), I8 fn = I8 nf = f0 · (Cn0), I8 sn = I8 ns = s0 · (Cn0). (5.3)

In what follows we shall make use of these. In fact, it is not difficult to show thatI5 f , I5 s, I5 n

are expressible in terms of the other invariants via

I5 f = I2

4 f + I2

8 fs + I2

8 fn, I5 s = I2

4 s + I2

8 fs + I2

8 sn, I5 n = I2

4 n + I2

8 fn + I2

8 sn, (5.4)

and that

I4 fI4 sI4 n − I4 fI
2

8 sn − I4 sI
2

8 fn − I4 nI
2

8 fs + 2I8 fsI8 fnI8 sn = I3. (5.5)

Thus, if the material is compressible there are seven independent invariants, while for an in-

compressible material there are six. These numbers comparewith the eight (compressible)

and seven (incompressible) for the case of a material with two non-orthogonalpreferred

directions. The orthogonality here reduces the number of invariants by one.

Note that in terms of the componentsEij , i, j ∈ {f, s, n}, of the Green–Lagrange strain

tensor used in several of the models discussed in§4, we have the connections2Eii =

I4 i − 1, i ∈ {f, s, n} (no summation overi) and2Eij = I8 ij , i 6= j. Thus, the general

framework herein embraces the orthotropic models discussed in §4 as special cases.
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16 G. A. Holzapfel and R. W. Ogden

Before we consider the most general case we note that for a compressible material that

depends only on the invariantsI1, I4 f , I4 s, I3, for example, the formula (3.12)1 yields

Jσ = 2ψ1B + 2ψ4 f f ⊗ f + 2ψ4 ss⊗ s+ 2I3ψ3I , (5.6)

whereB = FFT, f = Ff0, s = Fs0, andψ4 i = ∂Ψ/∂I4 i, i = f, s. We shall also use the

notationn = Fn0. The counterpart of the formula (5.6) for an incompressiblematerials is

σ = 2ψ1B + 2ψ4 f f ⊗ f + 2ψ4 ss⊗ s− pI . (5.7)

Note that here we have omitted the invariantI4 n rather thanI1, I4 f or I4 s. There is a

good physical reason for this choice, as we will explain in§6.

(a) Application to simple shear

Consider now simple shear in different planes and choose theaxes so that the compo-

nent vectors are given by

[f0] = [1 0 0]T, [s0] = [0 1 0]T, [n0] = [0 0 1]T. (5.8)

We now consider simple shear separately in each of the three planes fs, sn, fn, and we

identify the indices1, 2, 3 with f, s, n, respectively (see figure 4).

(i) Shear in thefs plane

We begin with simple shear in the fs plane and consider separately shear in thef0 and

thes0 directions. For shears in thef0 and thes0 directions the deformation gradients have

components

[F] =









1 γ 0

0 1 0

0 0 1









, [F] =









1 0 0

γ 1 0

0 0 1









, (5.9)

respectively. For the shear in thef0 direction we obtain

[B] =









1 + γ2 γ 0

γ 1 0

0 0 1









, f = f0, s = γf0 +s0, n = n0, (5.10)

I4 s = 1 + γ2, I4 f = I4 n = 1, the active shear stress isσ12 = 2γ(ψ1 + ψ4 s), and

σ13 = σ23 = 0.
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(a)

(fs)n0

f0

s0

(b)

(sf)n0

f0

s0

(c)

(sn)n0

f0

s0

(d)

(ns)n0

f0

s0

(e)

(fn)n0

f0

s0

(f)

(nf)n0

f0

s0

Figure 4. Sketches (a)–(f) of six possible modes of simple shear for myocardium defined with respect

to the fibre axisf0, sheet axiss0, and sheet-normal axis,n0: each mode is a plane strain deformation.

The modes are designated (ij), i, j ∈ {f, s, n}, corresponding to shear in theij plane with shear in

the j direction. Thus, the first letter in (ij) denotes the normal vector of the face that is shifted by

the simple shear, while the second denotes the direction in which that face is shifted. The modes in

which the fibres are stretched are (fn) and (fs).

For the shear in thes0 direction we have

[B] =









1 γ 0

γ 1 + γ2 0

0 0 1









, f = f0+γs0, s = s0, n = n0, (5.11)

I4 f = 1 + γ2, I4 s = I4 n = 1, the active shear stress isσ12 = 2γ(ψ1 + ψ4 f), and again

σ13 = σ23 = 0. Hence, the two shear responses in the fs plane are different. Note that for

each of the above two casesI8 fs = γ andI8 fn = I8 sn = 0.

Article submitted to Royal Society
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(ii) Shear in thesnplane

Next, we consider simple shear in the sn plane, considering separately shear in thes0
andn0 directions. Shears in thes0 and then0 directions have deformation gradients with

components

[F] =









1 0 0

0 1 γ

0 0 1









, [F] =









1 0 0

0 1 0

0 γ 1









, (5.12)

respectively. For the shear in thes0 direction we have

[B] =









1 0 0

0 1 + γ2 γ

0 γ 1









, f = f0, s = s0, n = n0+γs0, (5.13)

I4 n = 1 + γ2, I4 f = I4 s = 1, the active shear stress isσ23 = 2γψ1, andσ12 = σ13 = 0.

For the shear in then0 direction we obtain

[B] =









1 0 0

0 1 γ

0 γ 1 + γ2









, f = f0, s = s0+γn0, n = n0, (5.14)

I4 s = 1 + γ2, I4 f = I4 n = 1, the active shear stress isσ23 = 2γ(ψ1 + ψ4 s), and

σ12 = σ13 = 0. Hence, the two shear responses in the sn plane are different. Note that for

each of the above two casesI8 sn = γ andI8 fs = I8 fn = 0.

(iii) Shear in thefn plane

Finally, we have simple shear in the fn plane. For shears in the f0 andn0 directions the

deformation gradients are

[F] =









1 0 γ

0 1 0

0 0 1









, [F] =









1 0 0

0 1 0

γ 0 1









, (5.15)

respectively. For the shear in thef0 direction we have

[B] =









1 + γ2 0 γ

0 1 0

γ 0 1









, f = f0, s = s0, n = n0 +γf0, (5.16)

I4 n = 1 + γ2, I4 f = I4 s = 1, the active shear stress isσ13 = 2γψ1, andσ12 = σ23 = 0.
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For the shear in then0 direction we have

[B] =









1 0 γ

0 1 0

γ 0 1 + γ2









, f = f0+γn0, s = s0, n = n0, (5.17)

I4 f = 1 + γ2, I4 s = I4 n = 1, the active shear stress isσ13 = 2γ(ψ1 + ψ4 f), and

σ12 = σ23 = 0. Hence, the two shear responses in the fn plane are different. Note that for

each of the above two casesI8 fn = γ andI8 fs = I8 sn = 0.

Clearly, the (nf) and (ns) shear responses are the same, where we now recall that we

use the notation (ij) to specify that the shear is in thej direction in theij plane, withi, j ∈

{f, s, n}. In these two cases there is stretching along then0 direction but not along thef0 or

s0 directions. The (sn) and (sf) shear responses are also the same, with no stretching along

thef0 or n0 directions, and, finally, the responses are also the same in the fs and fn planes,

with stretching along the fibre directionf0 in these cases. It should be emphasized that in

the above the order of the indicesi andj in (ij) (when referring toshearor response) is

important, but without parenthesis, inij, the order is not relevant (when referring toplane).

The data of Dokoset al.(2002) indicate that the shear response is stiffest when thefibre

direction is extended, least stiff when the normal direction is extended and has intermediate

stiffness when the sheet direction is extended. This is reflected by the above formulas for

the shear stresses ifψ4 f > ψ4 s > 0. However, the data also show that there are differences

between the (fs) and (fn) and between the (sf) and (sn) responses, which are not captured by

the above model; the data show also that the (nf) and (ns) responses are indistinguishable.

A possible way to refine the model in order to reflect these differences is to include in the

strain-energy function one or more of the coupling invariants defined in (5.3). Bearing in

mind that the most general strain-energy function depends only on seven invariants for a

compressible material we may select, for example,I1, I2, I3, I4 f , I4 s, I8 fs, I8 fn, in which

case the Cauchy stress (5.6) is given by

Jσ = 2ψ1B + 2ψ2(I1B − B2) + 2I3ψ3I + 2ψ4 f f ⊗ f + 2ψ4 ss⊗ s

+ψ8 fs(f ⊗ s+ s⊗ f) + ψ8 fn(f ⊗ n + n ⊗ f). (5.18)

We emphasize that the invariantsI8 fs and I8 fn appearing in (5.18), and alsoI8 sn, de-

pend on thesenseof f0, s0 andn0, i.e. they change sign if the sense of one of the vec-

tors is reversed. However,Ψ should be independent of this sense and this is accommo-

dated by an appropriate functional dependence. For example, if we write Ψ̂(..., I2

8 fs
, ...) =

Ψ(..., I8 fs, ...) thenψ8 fs = 2∂Ψ̂/∂(I2

8 fs
)I8 fs and for shear in the fs plane we haveI8 fs =

f · s = γ for either direction of shear, and this vanishes in the reference configuration, as

doesψ8 fs providedΨ is well behaved as a function ofI2

8 fs
(which we assume to be the
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case). Similarly,I8 fn = f · n = γ for shear in the fn plane andI8 sn = s · n = γ for shear

in the sn plane.

In view of the above, in the reference configuration equation(5.18) reduces to

2(ψ1 + 2ψ2 + ψ3)I + 2ψ4 f f0 ⊗ f0 + 2ψ4 ss0 ⊗ s0 = 0, (5.19)

assuming the reference configuration is stress free, and this can only hold if

ψ1 + 2ψ2 + ψ3 = 0, ψ4 f = 0, ψ4 s = 0. (5.20)

Thus, these conditions must be satisfied along with

ψ8 fs = ψ8 fn = 0 (5.21)

in the reference configuration.

For an incompressible material (5.18) is replaced by

σ = 2ψ1B + 2ψ2(I1B − B2) − pI + 2ψ4 f f ⊗ f + 2ψ4 ss⊗ s

+ψ8 fs(f ⊗ s+ s⊗ f) + ψ8 fn(f ⊗ n + n ⊗ f), (5.22)

and only the six invariantsI1, I2, I4 f , I4 s, I8 fs, I8 fn remain. In this case, the conditions that

must be satisfied in the reference configuration are as above except for the first in (5.20),

which is replaced by2ψ1 + 4ψ2 − p0 = 0, wherep0 is the value ofp in the reference

configuration.

For simple shear in the fs plane the term inψ8 fs contributesψ8 fs to σ12 for shear in

either thef0 or s0 direction but does not contribute if the shear is in either the fn or the sn

plane. The term inψ8 fn similarly contributesψ8 fn to σ13 for shear in either thef0 or n0

direction in the fn plane. And since, as noted above, the dependence ofΨ is on the square

of each of these invariants these two terms each involve a factor of γ.

In summary, the shear stress versus amount of shear equations for the six simple shears

enumerated in (i)–(iii) are given by

(fs): σfs = 2(ψ1 + ψ2 + ψ4 f)γ + ψ8 fs, (5.23)

(fn): σfn = 2(ψ1 + ψ2 + ψ4 f)γ + ψ8 fn, (5.24)

(sf): σfs = 2(ψ1 + ψ2 + ψ4 s)γ + ψ8 fs, (5.25)

(sn): σsn = 2(ψ1 + ψ2 + ψ4 s)γ, (5.26)

(nf): σfn = 2(ψ1 + ψ2)γ + ψ8 fn, (5.27)

(ns): σsn = 2(ψ1 + ψ2)γ. (5.28)

It is worth remarking here that since simple shear is a plane strain deformation the invari-

antsI1 andI2 are identical and the effects ofψ1 andψ2 cannot be distinguished.
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(b) Application to biaxial deformation

Several experiments have been conducted using biaxial tests on thin sheets of tissue

taken from planes parallel to the endocardium. Such specimens are purportedly from within

a sheet containing the fibre axis and the in-sheet axis. Theseare referred to as the fibre and

cross-fibre directions. Note, however, that according to the structure discussed in§2, such

specimens are in general unlikely to contain a specific myocyte sheet, so care must be

exercised in interpreting such biaxial data.

Consider the pure homogeneous deformation defined by

x1 = λfX1, x2 = λsX2, x3 = λnX3, (5.29)

whereλf , λs, λn are the principal stretches, identified with the fibre, sheetand normal

directions, respectively. They satisfy the incompressibility condition

λfλsλn = 1. (5.30)

When the deformation (5.29) is applied to a thin sheet of tissue parallel to a sheet with

no lateral stress there is no shear strain and henceI8 ij = 0, i 6= j ∈ {f, s, n}, andψ8 ij = 0

correspondingly. Equation (5.22) then has only three components, namely

σff = 2ψ1λ
2

f + 2ψ2(λ
2

s + λ2

n)λ2

f + 2ψ4 fλ
2

f − p, (5.31)

σss = 2ψ1λ
2

s + 2ψ2(λ
2

n + λ2

f )λ
2

s + 2ψ4 sλ
2

s − p, (5.32)

0 = 2ψ1λ
2

n + 2ψ2(λ
2

f + λ2

s )λ
2

n − p. (5.33)

Elimination ofp by means of (5.33) allows (5.31) and (5.32) to be expressed as

σff = 2ψ1(λ
2

f − λ2

n) + 2ψ2λ
2

s (λ
2

f − λ2

n) + 2ψ4 fλ
2

f , (5.34)

σss = 2ψ1(λ
2

s − λ2

n) + 2ψ2λ
2

f (λ
2

s − λ2

n) + 2ψ4 sλ
2

s . (5.35)

If we omit the dependence on the invariantI2 then the latter two equations simplify to

σff = 2ψ1(λ
2

f − λ2

n) + 2ψ4 fλ
2

f , (5.36)

σss = 2ψ1(λ
2

s − λ2

n) + 2ψ4 sλ
2

s . (5.37)

(c) A specific model

In order to decide which of the invariants to include in a particular model we now exam-

ine interpretations of the invariants. First, we include anisotropic term based on the invari-

ant I1 since this can be regarded as associated with the underlyingnon-collagenous and

non-muscular matrix (which includes fluids). This could be modelled as a neo-Hookean
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(a) Unloaded

Matrix

b

Collagen fibre

b Muscle fibre

(b) Tension

(c) Compression

Figure 5. Schematic representation of the arrangement of muscle and collagen fibres and the sur-

rounding matrix: (a) unloaded structure; (b) structure under tensile load in the muscle fibre direction,

showing decreased inter-fibre separation so that the collagen network bears load primarily in the

muscle fibre direction; (c) structure under compressive load in the muscle fibre direction, showing

the muscle fibres buckled and lateral extension of the collagen network.

material, as in the case of arteries (Holzapfelet al., 2000), or as an exponential (Demiray,

1972), for example.

A schematic of the embedded collagen-muscle fibre structureis shown in figure 5 for

the unloaded configuration and, separately, for configurations subject to tension and com-

pression in the direction of the muscle fibre (cardiac myocyte). The collagen fibres illus-

trated in figure 5 are thought to represent both the endomysial and the perimysial collagen

fibres, as briefly described in§2(a). Figure 5(b), in particular, shows the configuration in

which the tensile loading is in the muscle fibre direction. The muscle fibres are extended

and the inter-fibre distances are decreased while the collagenous network offers little resis-

tance laterally but does contribute to the exponentially increasing stress in the muscle fibre

direction. For tensile loading lateral to the muscle fibres there is also exponential stress

stiffening, which can be thought as being generated by recruitment of the collagen net-

work. Figure 5(c) depicts the tendency of the muscle fibres tobuckle under compressive
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load in the muscle fibre direction and stretched collagen cross fibres, i.e. the lateral inter-

fibre connections as well as the woven perimysial network arestretched. It is suggested

that the lateral stretching of the collagen fibres contributes to the observed relatively high

compressive stiffness of the myocardium.

To reflect the stiffening behaviour in the muscle fibre direction, as shown by exper-

imental tests (see, for example, figures 2 and 3) it is appropriate to use an exponential

function of I4 f . Similarly, for the sheet direction transverse to the muscle fibres; in this

direction the stiffening is in part associated with the collagen fibres connecting the muscle

fibres, as discussed above. For this direction we use an exponential function of the invariant

I4 s. Clearly, these terms contribute significantly to the stored energy when the associated

directions are under tension. However, when they are under compression their contribution

is minimal since the fibres do not support compression. For this reason we include these

terms in the energy function only ifI4 f > 1 or I4 s > 1, as appropriate. SinceI4 n depends

onI1, I4 f andI4 s we do not include it separately and therefore tensile and compressive be-

haviour in the normal direction is accommodated by the term in I1. These three invariants

are sufficient to model the tension/compression behaviour,and there is no need to include

I2. Indeed, they are also sufficient to characterize the basic features of the shear test results

of Dokoset al. (2002), which we will demonstrate in the following subsection.

As far as the more detailed shear behaviour is concerned (seefigure 2) it is necessary to

make use of one or more of the invariantsI8 ij . In view of the exponential trends shown in

figure 2, particularly for the curves (fs) and (fn), we chooseto use an exponential function

also for this part of the characterization. In particular, since the (nf) and (ns) curves are

not distinguished (see figure 2) it turns out that we need consider only the invariantI8 fs

associated with stretching of the fibres, and notI8 fn or I8 sn. The above considerations lead

us to propose the energy function given by

Ψ =
a

2b
exp[b(I1 − 3)] +

∑

i=f,s

ai

2bi

{

exp[bi(I4 i − 1)2] − 1
}

+
afs

2bfs

[

exp(bfsI
2

8 fs) − 1
]

,

(5.38)

wherea, b, af , as, bf , bs, afs, bfs are eight positive material constants, thea parameters hav-

ing dimension of stress while theb parameters are dimensionless. This consists of the

isotropic term inI1, the transversely isotropic terms inI4 f andI4 s and the orthotropic

term inI8 fs. Note that if we do not distinguish between the (fs) and (fn) and between the

(sf) and (sn) responses then only six constants are needed.
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From equation (5.22) this yields the Cauchy stress

σ = a exp[b(I1 − 3)]B − pI + 2af(I4 f − 1) exp[bf(I4 f − 1)2]f ⊗ f

+ 2as(I4 s − 1) exp[bs(I4 s − 1)2]s⊗ s+ afsI8 fs exp(bfsI
2

8 fs)(f ⊗ s+ s⊗ f).

(5.39)

In the following subsection we apply this specific strain-energy function to both biaxial

and shear test data and discuss the results in detail.

(d) Fit of the Yinet al.(1987) and Dokoset al.(2002) data

In this subsection we show the efficacy of the proposed model for fitting data on the

myocardium. First, we use the simplified model based on the three invariantsI1, I4 f , I4 s

for which the Cauchy stress is given by (5.39) with the final term omitted. The resulting

fit with the mean of the loading curves for positive (fs) and (fn) and for positive (sf) and

(sn) shears, as well as the common curve for positive (nf) and(ns) shears, extracted from

figure 2, is shown in figure 6. Clearly, this simple model reflects the general characteristics

of the distinct shears in the different directions, which exemplify the orthotropy. It is also

worth noting that if the isotropic term is replaced by the neo-Hookean termµ(I1 − 3)/2

the fit is still relatively good, although the shear stress versus amount of shear is then linear

for the (nf)–(ns) plot. We do not show this plot. The data shown in figure 2 indicate that the

response for negative shears is very similar to that for positive shear (with reversed sign of

the amount of shear and shear stress). Fitting the negative shear data along with those for

positive shear would have a minor effect on the values of the fitting parameters.

Second, with this as a starting point we now refine the fitting by including the final term

in (5.39) which allows the (fs) and (fn) and the (sf) and (sn) plots to be separated according

to figure 2. The resulting fit is shown in figure 7 and indicates very good agreement between

the model and the experimental data. As mentioned in§2(b), we have reversed the labels

fn and fs compared with those in Dokoset al. (2002). This is because all the other curves

in the latter paper show that the (fs) shear response is stiffer than that for (fn). This indeed

makes sense since the stiffnesses in the f, s and n directionsare, as noted previously, ordered

according to f> s> n. Thus, the (fs) shear response is expected to be stiffer than the (fn)

response. Equally, the (sf) response is stiffer than the (sn) response. It is also suggested

that the (nf) response should be stiffer than the (ns) response, although there is no clear

distinction seen in figure 2. Other data shown in Dokoset al. (2002) do indeed show a

small separation in the sense just indicated. The values of the material parameters for the

fits shown in figures 6 and 7 are summarized in table 1.
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Figure 6. Fit of the model (5.39) with the final term omitted tothe experimental data for the loading

curves from figure 2: (nf)–(ns) and mean of the loading curvesfor (fs) and (fn) and for (sf) and (sn).

The material parameters used are given in table 1.

Next, we use the model (5.39), specialized for the biaxial mode of deformation accord-

ing to equations (5.36) and (5.37), to fit the experimental data obtained from Yinet al.

(1987) and shown in figure 8. The associated material parameters are summarized in the

last row of table 1.

We are using here the biaxial data of Yinet al.(1987) for illustration purposes since, to

our knowledge, they are the only true biaxial, as distinct from equibiaxial, data available.

However, these data have limitations, and in, particular, it should be noted that they do not

provide information in the low strain region (between0 and0.05). This highlights the need

for more complete biaxial data. The fit presented in figure 8 istherefore rather crude but

can be improved if required by changing the isotropic term, i.e. theI1 function, and/or by

including an activation threshold to accommodate the ‘toe’region. Whether or not this is

done it is important to recognize that the biaxial data of Yinet al. (1987) can be captured

by a transversely isotropic specialization of the model. For the model used here, as can

be seen from table 1, only four material constants (withas = 0) are required. Hence,

the biaxial data alone appear to suggest that the material istransversely isotropic. Since
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Figure 7. Fit of the model (5.39) to the experimental data forthe loading curves from figure 2 with

separate (fs), (fn), (sf), (sn), and (nf)–(ns) not distinguished. The material parameters used are given

in table 1.

Table 1. Material parametersa, b, af , bf , as, bs, afs, bfs for the energy function (5.38) used to fit the

simple shear data for myocardium (Dokoset al., 2002) in figures 6 and 7 and the biaxial tension data

(Yin et al., 1987) in figure 8.

Experimental data a b af bf as bs afs bfs

(kPa) (-) (kPa) (-) (kPa) (-) (kPa) (-)

Shear, Fig. 6 0.057 8.094 21.503 15.819 6.841 6.959 − −

Shear, Fig. 7 0.059 8.023 18.472 16.026 2.481 11.120 0.216 11.436

Biaxial, Fig. 8 2.280 9.726 1.685 15.779 − − − −

this conflicts sharply with the shear data, care must be takenin drawing conclusions from

biaxial data alone. Additional experimental tests are required. For a fuller discussion of the

theory underpinning planar biaxial tests for anisotropic nonlinearly elastic solids we refer

to Holzapfel & Ogden (2009b).
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Figure 8. Fit of the model (5.39) to the experimental data of figure 3 (extracted from Yinet al., 1987)

for three different loading protocols for biaxial loading in the fs plane: (a) stressSff against strain

Eff in the fibre direction; (b) stressSss against strainEss in the sheet (cross-fibre) direction. The

three sets of experimental data are indicated by triangles,squares and circles, while the continuous

curves represent the fitted model. The biaxial data can be captured by a transversely isotropic model,

and hence only four material constants are required to fit thedata. The material parameters used are

given in table 1.

6. Convexity and related issues

In Holzapfelet al. (2000) we discussed the important issue of convexity of the strain-

energy function and its role in ensuring material stabilityand physically meaningful and

unambiguous mechanical behaviour. It is also important forfurnishing desirable mathemat-

ical features of the governing equations that have, in particular, implications for numerical

computation (see also Holzapfelet al., 2004; Ogden, 2003, 2009, for further discussion of

convexity and related inequalities). For the discussion here the form of the strain-energy

function (5.38) has particular advantages since it is the sum of separate functions of dif-

ferent invariants, with no cross terms between the invariants involved. This enables the

convexity status of each term to be assessed separately. We shall therefore consider in suc-

cession the three functionsF(I1),G(I4 f) andH(I8 fs) as representative and examine their

convexity as a function of the right Cauchy-Green tensorC.
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(i) The functionF(I1)

First we note that

∂F(I1)

∂C
= F

′(I1)I ,
∂2

F(I1)

∂C∂C
= F

′′(I1)I ⊗ I . (6.1)

Local convexity ofF(I1) as a function ofC requires that

∂2
F(I1)

∂C∂C
[A,A] ≡ F

′′(I1)(trA)2 ≥ 0 (6.2)

for all second-order tensorsA, from which we deduce thatF ′′(I1) ≥ 0. Note that strict

convexity is not possible sinceA can be chosen so that trA = 0. For the exponential

function considered in (5.38), i.e.

F(I1) =
a

2b
{exp[b(I1 − 3)] − 1}, (6.3)

this yieldsab ≥ 0. For a nontrivial function, however, we must haveab > 0. It is also

easy to see that for the stress response (in simple tension, for example) to be exponentially

increasing in the corresponding stretch we must haveb > 0. Thus, we havea > 0 and

b > 0.

(ii) The functionG(I4 f)

ForG(I4 f) it follows from the definition ofI4 f in (5.1)1 that

∂G

∂C
= G

′(I4 f)f0 ⊗ f0,
∂2

G

∂C∂C
= G

′′(I4 f)f0 ⊗ f0 ⊗ f0 ⊗ f0. (6.4)

Local convexity ofG(I4 f) requires that

∂2
G

∂C∂C
[A,A] ≡ G

′′(I4 f [(Af0) · f0]2 ≥ 0 (6.5)

for all second-order tensorsA. It follows thatG is convex inC providedG′′(I4 f) ≥ 0.

For the exponential form

G(I4 f) =
af

2bf
{exp[bf(I4 f − 1)2] − 1} (6.6)

we obtain

G

′(I4 f) = af(I4 f − 1) exp[bf(I4 f − 1)2], (6.7)

G

′′(I4 f) = af exp[bf(I4 f − 1)2]{1 + 2bf(I4 f − 1)2}. (6.8)

For extension in the fibre direction we haveI4 f > 1, and from (6.7) we deduce that for the

material response associated with this term to stiffen in the fibre direction we must have
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af > 0 andbf > 0. Moreover, these inequalities imply thatG
′′(I4 f) > 0 and henceG is

a convex function (both in tension and compression). It can be shown similarly that the

separable Fung-type model (4.7) is convex if the material constants it contains are positive.

Since the pole-zero model (4.8) is separable it can be treated on the same basis. For

example, if we consider just the first term in (4.8) we may write

G(I4 f) =
kffE

2

ff

|aff − |Eff | |
bff
, (6.9)

whereI4 f = 1 + 2Eff , and, withkff > 0, aff > 0 andbff > 0 it is straightforward to show

that this is convex for allEff if 0 < bff ≤ 1 or bff ≥ 2. However, it is convex for allEff

such that|Eff | < aff (which is a necessary restriction) irrespective of the value of bff > 0.

Although the calculations are somewhat different (becausethe contributions of the dif-

ferent componentsEij are not separable) it is also easily shown that the Costa model

(4.5)–(4.6) and similar Fung-type models are convex if the coefficientsbij are positive.

By contrast, some models are not in general convex, as is the case with the model (4.2)

because of the influence of the term cubic in
√

I4 − 1 and the coupled term inI1 andI4.

(iii) The functionH(I8 fs)

Similar results hold forH(I8 fs). Using the definition (5.3)1 we calculate

∂H

∂C
=

1

2
H

′(I8 fs)(f0 ⊗ s0 + s0 ⊗ f0) (6.10)

and

∂2
H

∂C∂C
=

1

4
G

′′(I8 fs)(f0 ⊗ s0 + s0 ⊗ f0) ⊗ (f0 ⊗ s0 + s0 ⊗ f0). (6.11)

For an arbitrary second-order tensorA we have

∂2
H

∂C∂C
[A,A] ≡ H

′′(I8 fs)[(Af0) · s0]2, (6.12)

and for convexity this must be non-negative for allA. Thus,H is convex inC provided

H
′′(I8 fs) ≥ 0.

For the exponential form

H(I8 fs) =
afs

2bfs

[

exp(bfsI
2

8 fs) − 1
]

(6.13)

we obtain

H

′′(I8 fs) = afs exp[bfs(I8 fs − 1)2](1 + 2bfsI
2

8 fs) (6.14)

so convexity is guaranteed ifafs > 0 andbfs > 0.
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In the above discussion based separately on the invariantsI1, I4 f andI8 fs we have

examined only the convexity of individual terms that contribute (additively) to the strain-

energy function. If each such term is convex then the overallstrain-energy function is

convex. Note, however, that it is not necessary that each such contribution be convex pro-

vided any non-convex contribution is counteracted by the convexity of the other terms.

The analysis of convexity is relatively straightforward for a compressible material, but for

an incompressible material more care is needed because thennot all components ofE are

independent. For discussion of different aspects of convexity, see, for example, Holzapfel

et al. (2000), Ogden (2003) and Ogden (2009).

(iv) Strong ellipticity and other inequalities

The notion of convexity is different from, but closely related to, aspects of material

stability, for discussions of which in the context of the mechanics of soft biological tis-

sues we refer to Holzapfelet al. (2004), Ogden (2003) and Ogden (2009), for example,

and references therein. Whether of not thestrong ellipticity conditionholds is one issue

that arises in consideration of material stability. If it holds then the emergence of certain

types of non-smooth deformations, for example, is precluded. For three-dimensional de-

formations analysis of the strong ellipticity condition isdifficult, especially for anisotropic

materials such as those considered here. Necessary and sufficient conditions for strong

ellipticity to hold for isotropic materials are available for three dimensions but are very

complicated; in two dimensions they are much more transparent, but their counterparts,

even for transversely isotropic materials, are not available. For plane strain deformations

the strong ellipticity condition has been analyzed in some detail by Merodio & Ogden

(2002) and Merodio & Ogden (2003), respectively for incompressible and compressible

fibre-reinforced elastic materials. Here we focus our briefdiscussion on the anisotropic

contributions to the strain-energy function.

If we consider the termG(I4 f), for example, on its own then (Merodio & Ogden, 2002)

strong ellipticity requires that the inequalities

G

′(I4 f) + 2I4 fG
′′(I4 f) > 0, G

′(I4 f) > 0 (6.15)

hold. From (5.22) and the formulaf · f = I4 f , which comes from (5.1)1, it can be seen that

the component of Cauchy stress in the fibre direction is givenby 2I4 fG
′(I4 f). For this to be

positive (negative) whenI4 f > 1 (< 1) we requireG′(I4 f) > 0 (< 0), which means that

strong ellipticity does not hold under fibre compression (this is the case for the exponential

model; see equation (6.7)). In the context of arterial wall mechanics (see, for example,

Holzapfelet al., 2000) this problem is circumvented by recognizing that thefibres tend

to buckle in compression and do not support compression to a significant degree, so that
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the termG(I4 f) can be considered to be inactive whenI4 f < 1. Even if this term is not

dropped for compression in the fibre direction its tendency to lead to loss of ellipticity is

moderated to some extent by the other terms in the strain-energy function. Turning now

to the first inequality in (6.15) we note that this is equivalent to requiring that the nominal

stress component in the fibre direction be a monotonic function of the stretch
√

I4 f in

that direction, as shown by Merodio & Ogden (2002), which is consistent with the typical

stiffening of the stress response of the fibres.

The situation with regard toH(I8 fs) is more delicate since, on its own, it can violate

strong ellipticity in either tension or compression and generally has a destabilizing influ-

ence (Merodio & Ogden, 2006). Here we examine its behaviour for simple shear. With

reference to (5.22) we note thatH(I8 fs) contributes the termH′(I8 fs)(f ⊗ s+ s⊗ f) to the

Cauchy stressσ. For the simple shear (sf) in the fs plane, we havef = f0 ands = γf0 + s0,

whereI8 fs = γ is the amount of shear; see§5(a)(i). The component of the shear stress on

the plane normal to the initial directions0 is then simplyσ12 = H
′(I8 fs), and we require

H

′(γ) R 0 according as γ R 0, (6.16)

for the shear stress and strain to be in the same direction. Furthermore, if we requireσ12

to be a monotonic increasing function ofγ then we must haveH′′(I8 fs) ≥ 0, which is

consistent with the requirement of convexity in (iii) above.

7. Discussion

In order to understand the highly nonlinear mechanics of thecomplex structure of the pas-

sive myocardium under different loading regimes a rationally based continuum model is

essential. In the literature to date models of the myocardium have been mainly of poly-

nomial and/or exponential form, an important exception being the pole-zero model (4.8).

Many of the models, including recently published ones, havebeen based on the assump-

tion of transverse isotropy, and are not therefore able to capture the orthotropic response

illustrated in the shear data of Dokoset al. (2002) on the myocardium. Moreover, not all

of these are consistent with convexity requirements noted in §6; an example of such is

(4.2), as mentioned in§6. As for the orthotropic models presented in§4(b) we have al-

ready noted the common feature that they are expressed in terms of the components of the

Green–Lagrange strain tensor and that these particular components are also expressible in

terms of the invariants. Thus, they all fit within the generalframework we have outlined in

§5. Note, however, that none of them has an explicit isotropiccontribution.

While the Costaet al. (2001) model (4.5)–(4.6) has seven material parameters the

model (4.7) has 12 and the pole-zero model in its most generalform (4.8) has 18. However,
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the first of these three models has the disadvantage that the parameters are highly coupled

and hence difficult to interpret in terms of the myocardium structure. As pointed out by

Schmidet al. (2008) the parameter estimation process for the strain-energy function of

Costaet al. (2001) was reliable, while for (4.7) and the special case of (4.8) with 12 pa-

rameters the process was unstable and required more sophisticated strategies, as outlined in

their paper. It should be pointed out that, in general, leastsquares optimization procedures

with large numbers of parameters can lead to non-uniquenessof parameter sets because

of sensitivity to small changes in the data (see, for example, Fung, 1993, Section 8.6.1).

Another common feature is that the orthotropic models reviewed here are somewhatad

hoc in nature and were constructed without the benefit of the general underlying theory

such as that described in§5. Nevertheless, in spite of some shortcomings, including lack

of convexity in some cases, these models have certainly beenhelpful in establishing some

understanding of the biomechanics of the myocardium.

The specific constitutive model proposed in (5.38) has been shown to describes the

general characteristics of the available biaxial data relatively well and to fit the available

shear data very well. This is a model with only four invariants that is included within the

general framework based on six independent invariants for an incompressible orthotropic

material, which the myocardium is considered to be. A particular merit of the invariant

theory is that it is geometry independent and requires knowledge only of the local pre-

ferred directions in the material. Moreover, it is relatively easy to implement within a finite

element environment, as is the case with the invariant-based models for arteries (see, for

example, Holzapfel, 2000). The three-dimensional orthotropic model is based on a struc-

tural approach in that it takes account of the morphologicalstructure through the muscle

fibre direction, the myocyte sheet orientation and the sheetnormal direction and considers

the resulting macroscopic nature of the myocardium. In thissense it is not considered to be

a micro-mechanically based model. The particular form of the model adopted here uses a

set ofeightmaterial parameters whose interpretations can be based partly on the underly-

ing histology. This number can be reduced tofive if the neo-Hookean model is used as the

isotropic term for fitting the biaxial data or for illustrating basic features of the different

simple shear modes. Construction of the model has been greatly facilitated by the clear

structure of the stress–deformation equations that followfrom the general form (5.22) and

its specializations such as (5.23)–(5.28). Furthermore, the model introduced here is consis-

tent with standard inequalities required from considerations of convexity, strong ellipticity

and material stability.

Although some aspects of the passive mechanical response ofthe myocardium seem to

be well known, a carefully literature survey shows that there are insufficient experimental

data available, and there is therefore a pressing need for more data to inform further de-
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velopment based on the framework discussed in the present work. In terms of the need to

simulate the response of the myocardium structure, the nextstep in our work is to develop

a numerical (finite element) realization of the model. Beyond that, with the need for more

data emphasized, the constitutive model for the passive behaviour of the myocardium pro-

posed herein may serve as a robust basis for the development of more advanced coupled

models that incorporate, for example, active response (muscle contraction), signal trans-

duction and electrophysiology.
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