ME338A - Final project - Paper review - due in class Thu, March 12, 2009, 11am

Constitutive modelling of passive myocardium
A structurally-based framework for material characteriza tion

Gerhard A. Holzapfel & Ray W. Ogden

Philosophical Transactions of the Royal Society A, accepte d for publication, 2009.

This final project will demonstrate that during the past 10 weeks, you have learned to read
state of the art continuum mechanics literature. Gerhard Holzapfel and Ray Ogden have
submitted this manuscript for publication and agreed that you could read and review
it before it is actually published. It introduces a new continuum mechanics model for
passive cardiac muscle tissue similar to the one we have dissected in class.

1

Read the publication and try to understand what it is all about. You do not neces-
sarily need to understand all the equations. You can briefly glance over section 6, it
is not relevant for this final project.

Summarize the manuscript in less than 200 words.

Ogden & Holzapfel use a slightly different notation than we have used in class, i.e.,
they do not use dots to indicate scalar products. Rewrite equations (3.1) to (3.14) in
our tensor notation, i.e., use the dot for scalar products when appropriate.

Rewrite equations (3.1) to (3.14) in index notation. For each equation, state in brack-
ets whether it is a scalar, vectorial, or second order tensorial equation.

In section 4, Ogden & Holzapfel review existing constitutive models for passive
cardiac tissue. They discuss three transversely isotropic models (4.1), (4.2), and (4.3)
and three orthotropic models (4.5), (4.7), and (4.8). Summarize these six models in a
table. For each model, list the first author, the year it was published, the invariants
it is based on, and the parameters that are needed.

In figure 4, image (a) represents the deformation state you had to analyze in your
midterm. Calculate the Green Lagrange strain tensor E = 4 [F'- F — I | from the
deformation gradient given in (5.9) and sketch the deformed configuration in the
fs-plane.

Equation (5.38) is the key equation of the paper. It introduces the free energy func-
tion for myocardial tissue. Describe its three terms and explain the required material
parameters.

Most soft biological tissues are incompressible and anisotropic. How is incompress-
ibility and anisotropy handled in the constitutive formulation?

Review the publication with the help of the attached spreadsheet. Use common
sense to answer the questions you cannot answer based on your current continuum
mechanics knowledge. There are no wrong answers, and we will not take off points
as long as you can justify your opinion.
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In this paper we first of all review the morphology and struetof the myocardium and discuss
the main features of the mechanical response of passiveargiam tissue, which is an orthotropic
material. Locally within the architecture of the myocamdidhree mutually orthogonal directions
can be identified, forming planes with distinct materiap@sses. We treat the left ventricular my-
ocardium as a non-homogeneous, thick-walled, nonlinegdéastic and incompressible material and
develop a general theoretical framework based on invariassociated with the three directions.
Within this framework we review existing constitutive mésland then develop a structurally based
model that accounts for the muscle fibre direction and theaytgosheet structure. The model is
applied to simple shear and biaxial deformations and a Bpémim fitted to the existing (and some-
what limited) experimental data, emphasizing the orttmtrand the limitations of biaxial tests. The
need for additional data is highlighted. A brief discussafnissues of convexity of the model and
related matters concludes the paper.

Keywords: Myocardium; constitutive modelling; orthotrop y; muscle fibres; myocyte sheet
structure

1. Introduction

Of central importance for the better understanding of tmelamental mechanisms under-
lying ventricular mechanics are (i) realistic descriptaf the 3D geometry and structure
of the myocardium, (ii) continuum balance laws and boundamnditions, and, most im-

portantly, (iii) constitutive equations that characterthe material properties of the my-

1 Author for correspondence (holzapfel @ TUGraz.at).
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2 G. A. Holzapfel and R. W. Ogden

ocardium, including their spatial and temporal variatidngether with statistical parame-
ter estimation and optimization and validation. In ordecharacterize the material proper-
ties it is essential to have available comprehensive fateisrmation data from a range of
different deformation modes. In particular, a combinatibhiaxial test data with different
loading protocols and shear test data at different specarientations is required in order
to capture adequately the direction-dependent nonlineséenial response.

The purpose of the present paper is to develop a generaktieadframework within
the context of nonlinear elasticity theory that takes aotofithe structural features of the
myocardium and its orthotropic properties. Within thanfiework we then consider spe-
cific models for the myocardium in order to characterize #sgive mechanical response.
There are several models of the elasticity of the myocardiuvailable in the literature,
including isotropic models (see, for example, Demiray,@)9#ansversely isotropic mod-
els (for example, Humphrey & Yin, 1987; Humphreyal,, 1990; Guccionet al, 1991;
Costaet al, 1996), and, more recently, orthotropic models (for exanpbstaet al.,, 2001;
Hunteret al, 1997; Schmicet al,, 2006). We review these and several others briefidin
For a recent account of modelling aspects of the mechanitsedfieart and arteries we
refer to the forthcoming edited volume by Holzapfel & Ogd2a@9a).

One problem in developing an adequate constitutive modileishortage of experi-
mental data suitable for detailed parameter estimatiopétific functional forms. Early
contributions to gathering such data are contained in thekwb Demer & Yin (1983)
and Yinet al.(1987) in which data from biaxial tests were obtained. Hasveas we shall
emphasize later, data from biaxial tests alone are not é@ntugharacterize the passive
response of myocardium since such data suggest that theahetéransversely isotropic.
That this is not the case has been demonstrated clearly mahe recent work by Dokos
et al.(2002), which, on the basis of shear tests conducted on sldyged specimens from
different orientations within the myocardium, highligtitdne orthotropic behaviour of the
material. It remains the case, however, that there is a rereddre comprehensive sets of
data to be obtained.

In §2 we outline the key features of the morphology and struabfitbe myocardium
and then describe the passive mechanical response of niyald@ggsue on the basis of
the available biaxial and shear test data. Against thisdrackd we then construct, §3,

a general framework for the elastic strain-energy funchiased on the use of invariants
that are related to the myocardium structure. This framkwonbraces most, if not all,

of the elasticity-based constitutive models for the passiyocardium that have appeared
in the literature to date. Next, i§d, as mentioned above, we review the existing models
within this framework. In§5, guided by data from shear and biaxial tests, we develop an
appropriately specialized form of the general strain-gpéunction fromg§3. This is then
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Constitutive modelling of passive myocardium 3

specialized further by the introduction of specific funotbforms for the dependence
of the energy function on the restricted set of invariant thincludes. The model so
constructed is then evaluated against the considered ahdariaxial data and values of
the material constants it contains are obtained by curvweditThe general features of the
shear data of Dokost al. (2002) are reproduced by using six material constants,ewhil
eight constants are needed to recover finer details of ttee datfit the biaxial data a
transversely isotropic specialization of the model suffitee give a reasonable fit to the
data of Yinet al. (1987) and only four material constants are needed. Thigigigs the
point already alluded to that biaxial tests alone are ndtcseit to extract the orthotopic
nature of the tissue and should not therefore be used irtizola

In §6 we examine the form of strain-energy function construetéh reference to in-
equalities that ensure ‘physically reasonable respoirsgding the monotonicity of the
stress deformation behaviour in uniaxial tests and notafreonvexity and strong ellip-
ticity in 3D. These all require, in particular, that the mébs constants included in the
various terms contributing to the strain-energy are pasitivhich is consistent with the
values obtained in fitting the data. Finally, is devoted to a concluding discussion.

2. Morphology, structure and typical mechanical behaviourof the
passive myocardium

(&) Morphology and structure

The human heart consists of four chambers, namely the rightedt atria, which re-
ceive blood from the body, and the left and rigientricles which pump blood around the
body. For a detailed description of the individual functtities of these four chambers, see
Katz (1977). There is still an ongoing debate concerningthecture of the heart (Gilbert
et al, 2007), and, in particular, the anisotropic cardiac migragure. One approach de-
scribes the heart as a single muscle coiled in a helical pattéhile the other approach
considers the heart to be a continuum composed of laminatshen approach we are
adopting in the present work.

The left ventricle has the largest volume of the four chamlbed serves the particular
purpose of distributing blood with a higher pressure thanrtht ventricle. As a conse-
guence of the need to support higher pressure, the wallndgkof the left ventricle is
larger than that of the right ventricle. The wall thicknesd aurvature of the left ventricle
vary spatially; it is thickest at the base and at the equatdrthinnest at its apex. The wall
thickness and curvature also vary temporally through thaéi@a cycle. The left ventricular
wall may be regarded as a continuum of myocardial fibres, avgmooth transmural vari-
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4 G. A. Holzapfel and R. W. Ogden

(@)

Left ventricle

Epicardium

Endocardium (b) Block taken from the

equatorial site

Epicardium

n e
’ © Mean fibre
(d) Sheet-normal A No orientation
Sheet- \\ \
axis
S —» S

Fibre axis
fo

Figure 1. Schematic diagram of: (a) the left ventricle andtaoat from the equator; (b) the structure
through the thickness from the epicardium to the endocarg({a) five longitudinal—-circumferential
sections at regular intervals from 10-90% of the wall thids from the epicardium showing the
transmural variation of layer orientation; (d) the layemgdanization of myocytes and the collagen
fibres between the sheets referred to a right-handed ontinahgoordinate system with fibre axig
sheet axisy and sheet-normal axi%; (e) a cube of layered tissue with local material coordisate
(X1, X2, X3) serving the basis for the geometrical and constitutive rhode
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Constitutive modelling of passive myocardium 5

ation of the fibre orientations. It is modelled reasonablyl a® a thick-walled ellipsoid of
revolution that is truncated at the base, as depicted inefig(a).

The heart wall consists of three distinct layers: an inngedgtheendocardiury, a
middle layer (thenyocardiun), and an outer layer (thepicardiun). The endocardium lines
the inside of the four chambers and it is a serous membratie approximate thickness
100 um, consisting mainly of epimysial collagen, elastin andyeteof endothelial cells,
the latter serving as an interfacial layer between the wadl the blood. The protective
epicardium is also a membrane with thickness of the ordébof:m and consists largely
of epimysial collagen and some elastin.

In this paper we focus attention on the myocardium of the/gfitricle. The ventricular
myocardium is the functional tissue of the heart wall withoanplex structure that is well
represented in the quantitative studies of LeGetal. (1995, 1997), Youngt al. (1998),
and Sandst al. (2005). The left ventricular wall is a composite of layersgbeets) of par-
allel myocytes which are the predominant fibre types, ocimygpgbout 70% of the volume.
The remaining 30% consists of various interstitial compusé€Frank & Langer, 1974),
while only 2-5% of the interstitial volume is occupied by legen arranged in a spatial
network that forms lateral connections between adjacemschadibres, with attachments
near the z-line of the sarcomere. Figure 1(b) illustratestrange of the three-dimensional
layered organization of myocytes through the wall thiclsneem the epicardium to the
endocardium. In addition, figure 1(b) displays views of figaditudinal—circumferential
sections at regular intervals through the left ventriculall (at 10—90% of the wall thick-
ness from the epicardium). The sections are parallel to pfeadial surface and are dis-
played separately in figure 1(c). As can be seen, the musctediientations change with
position through the wall; in the equatorial region the m@thant muscle fibre direction
rotates from about-50° to +70° (sub-epicardial region) to nearty in the mid-wall re-
gion to about-50° to —70° (sub-endocardial region) with respect to the circumfeagnt
direction of the left ventricle. It should be emphasized th& layers are not in general
parallel to the vessel walls, as can be appreciated fromdigj(ly) even though it is often
assumed in the literature that they are so parallel.

Figure 1(d) is a schematic of the layered organization of egtes with a fine weave
of endomysial collagen surrounding the myocytes and latenanections, which are 120
to 150 nm long, between adjacent myocytes. In addition, okdsvof long perimysial fi-
bres span cleavage planes and connect adjacent muscls, kaféch are3—4 cells thick.
The perimysial fibres are most likely to be the major struadteiements of the extracel-
lular matrix. They are coiled and have a ratio of contour tartg end-to-end distance of
approximately 1.3 in the unloaded state of the ventricledKé&nnaet al, 1996). Some
branching between adjacent layers is evident although myrimestances branching is rel-
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6 G. A. Holzapfel and R. W. Ogden

atively sparse so that the inter-layer separation can Inéfisignt. Capillaries with a fairly
dense and uniform distribution within the myocardial la/and on their surfaces are also
present, as indicated in figure 1(d). Understanding of thestmural variation of the my-
ocardial tissue structure is important since this specifibitecture is responsible for the
resistance of the heart to bending and twisting during théiaa cycle.

The layered organization is characterized by a right-hdrmatthonormal set of basis
vectors and an associated orthogonal curvilinear systeromflinates. The local fixed set
of (unit) basis vectors consists of tfibre axisf,, which coincides with the muscle fibre
orientation, thesheet axissy defined to be in the plane of the layer perpendicular to the
fibre direction (sometimes referred to as the cross-fibrection), and thesheet-normal
axis ng, defined to be orthogonal to the other two. Figure 1(e), wisitcbws a cube of
layered tissue with the local material coordinatds, X», X3), serves as a basis for the
proposed geometrical and constitutive model. In what ¥edleve shall use the labels f, s
and n to refer to fibre, sheet and normal, respectively. W alsa use the pairs fs, fn and
sn to refer to the fibre-sheet, fibre-normal and sheet-nophaaks.

(b) Mechanical behaviour of the passive myocardium

The passive myocardium tissue is an orthotropic materiginigathree mutually or-
thogonal planes with distinct material responses, as thdtseof Dokot al. (2002) from
simple sheatests on passive ventricular myocardium from pig heartartleshow. This
is illustrated in figure 2, which is based on Fig. 6 from thédapaper. It should be noted,
however, that the ordering of the labels fn and fs in Fig. 6 ok@set al.(2002) is inconsis-
tent with the data shown in the other figures in that paperofcect this we have switched
the roles of fs and fn in figure 2 compared with Fig. 6 of Dokbal. (2002). This point is
discussed further if5(d). The tissue exhibits a regionally-dependent and timgendent,
highly nonlinear behaviour with relatively low hysteresiad also directionally dependent
softening as the strain increases. From figure 2 it can bethaementricular myocardium
is least resistant to simple shear in the fn and sn planeshé&arsn the f and s directions,
respectively (the lowest curve in figure 2 above the posgthvear axis). It is most resistant
to shear deformations that produce extension of the myd@fyais in the fs and fn planes
(the upper two curves for positive shear). Note, howevex tr the planes containing
the fibre direction the shear responses (fs) and (fn) in teetskind normal directions are
different. Similarly, for the planes containing the shee¢ction the responses (sf) and (sn)
in the fibre and normal directions are different. On the otierd, the shear responses in
the planes containing the normal direction are the samééoconsidered specimen.

The passivéiaxial mechanical properties of non-contracting myocardium asedbed
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Figure 2. Shear stress versus amount of shear for simple tels¢son a cube of a typical myocardial
specimen in the fs, fn and sn planes, where(thig shear refers to shear in thedirection in theij
plane, where # j € {f,s,n}. Note that thgij) shear entails stretching of material line elements
that are initially in thei direction. The data show clearly the distinct responseshiethree planes
and hence the orthotropy of the material. In addition, itsittates the highly nonlinear response and
the viscoelastic effect evidenced by the relatively smgditéresis between loading and unloading.
For the planes containing the f direction the shear respoffispand (fn) in the s and n directions are
different; for the planes containing the s direction thpoeses (sf) and (sn) in the f and n directions
are also different; the shear responses (nf) and (ns) inlt#meg containing the n direction are the
same for the considered specimen. Adapted from Dekas. (2002).

by Demer & Yin (1983), Yiret al.(1987), Smaill & Hunter (1991) and Novait al.(1994),

for example. To illustrate the results we show in figure 3 espntative stress-strain data
which we extracted from Fig. 4 in Yiet al. (1987). For three different loading protocols
for biaxial loading in the fs plane of a canine left ventriolgocardium, figure 3(a) shows
the second Piola—Kirchhoff stresg: in the fibre direction as a function of the Green—
Lagrange straitk’g in the same direction, while figure 3(b) shows the correspanplots

for the sheet directiond,s againstEy;). The three sets of data in each of (a) and (b) cor-
respond to constant strain ratiés: / Fss. Just as for the shear response the biaxial data
indicate high nonlinearity and anisotropy. Data for uniogdvere not given in Yiret al.
(1987).

Article submitted to Royal Society
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Figure 3. Representative stress-strain data for threerdiit loading protocols for biaxial loading
in the fs plane of canine left ventricle myocardium: (a) str8g against strainEg in the fibre
direction; (b) stressSss against strainEss in the sheet (cross-fibre) direction. Note tiaf; and
S;; are the components of the Green—Lagrange strain tensoharsgtond Piola—Kirchhoff stress
tensor, respectively. The three sets of data corresponohistant strain ratio&'s / Ess equal to 2.05
(triangles), 1.02 (squares), 0.48 (circles). The dataxtraeed from the two upper plots in Fig. 4 of
Yin et al. (1987).

As with many other soft biological tissues, the myocardiwan be regarded as an in-
compressible material. This has been established in erpats by Vossouglet al.(1980),
who subjected tissue specimens to various levels of hyatiostress. They recorded the
associated volumetric strains and concluded that the nmgl@tdissue is essentially in-
compressible.

According to experimental data obtained from equatoriaksl of the left ventricular
wall of potassium arrested rat hearts it is clear that thead#d myocardium is residu-
ally stressed (Omens & Fung, 1990), in particular that tiecempressive circumferential
residual stress in the endocardium of the left ventricletandile circumferential residual
stress in the epicardium; see also Cetal. (1997), who suggested that the residual stress
in the left ventricle is associated with pre-stretchinghia plane of the myocardial sheets.
According to Costa&t al.(1997), there is relatively little residual stress alonghuscle fi-
bre direction in the midwall and there are also residuassge normal to the fibre direction;

Article submitted to Royal Society



Constitutive modelling of passive myocardium 9

the perimysial fibre network may be a primary residual sthesging structure in passive
myocardium. Residual stresses are thought to arise durigly and remodelling (see, for
example, Rodrigueet al, 1994 and Rachev, 1997). Residual stresses have an importan
influence on the stress pattern in the typical physiologitatle. For example, incorpora-
tion of a residual stress distribution may reduce tensildoeardial stress concentrations
predicted by ventricular wall models (Guccioekal., 1991). The importance of residual
stresses has also been recognized in arterial wall mechésge, for example, Holzapfel

et al, 2000; Holzapfel & Ogden, 2003). However, three-dimenaioasidual stresses are
very difficult to quantify and hence their modelling must beated with caution.

Although the myocardium tissue appears to be viscoelds@aspect of its behaviour
is not important from the point of view of mechanical modgdlion the time scale of
the cardiac cycle, which is short compared with the relaxatime of the viscoelastic
response. Indeed, modelling of the viscoelasticity hasived little attention in the litera-
ture, not least because there are very few data availableeonidcoelastic properties of the
tissue. An exception to this is the model of Huygtial. (1991). Here, we treat the tissue
behaviour as elastic, with the characteristic features/atio figures 2 and 3.

It is therefore important to model the passive response efleft ventricular my-
ocardium as a non-homogeneous, thick-walled, incomgoiessirthotropic nonlinearly
elastic material, and this is the approach we adopt in thegptepaper. Although residual
stresses are also important for the stress analysis of thpasite myocardium it is first
necessary to develop a constitutive model that takes fabaat of the basic structure of
the material with respect to a stress-free reference cawafign. Thus, we do not include
residual stresses in the constitutive model developed hsreas the case for the arterial
model constructed in Holzapfet al. (2000).

3. Essential elements of continuum mechanics
(a) Kinematical quantities and invariants

The basic deformation variable for the description of trmldkinematics is the defor-
mation gradienF, and we use the standard notation and convention

J =detF > 0. (3.1)
For an incompressible material we have the constraint

J=detF=1. (3.2)
Associated with- are the right and left Cauchy-Green tensors, defined by

C=F'F, B=FF", (3:3)

Article submitted to Royal Society



10 G. A. Holzapfel and R. W. Ogden

respectively. Also important for what follows is the Grekagrange (or Green) strain

tensor, defined by

1
E=5(C-1) (3.4)

wherel is the identity tensor. The principal invariants©f(also ofB) are defined by
1
Li=tC, IL=g[If ~tr(C?)], I)=detC, (3.5)

with I3 = J? = 1 for an incompressible material. These &@tropicinvariants. For more
details of the relevant material from continuum mechaniesrefer to Holzapfel (2000)
and Ogden (1997).

If the material has a preferred direction in the referenadigaration, denoted by the
unit vectorag, this introduces anisotropy, specifically transversedgnt, and with it come
two additional (transversely isotropic) invariants (oaguinvariants) defined by

Ii=a - (Ca), I5=ay-(C’a). (3.6)

Note that these are unaffected by reversal of the direcfiap.df one wishes to distinguish
between the directions, and —a, as far as the material response is concerned then yet
another invariant would be needed. Here, however, we do omgider this possibility.
We refer to Spencer (1984) for background information onitlvariant theory of fibre-
reinforced materials.

If there are two preferred directions, the second denbgethis introduces the invari-
ants

Is = bg - (Cby), I7 =by - (Cby) (3.7)

associated with it and, additionally, a coupling invarjatgnoted byls, which we define
here by

Is = ag - (Chy) = by - (Cav). (3.8)

Note that this changes sign if eith&y or by (but not both) is reversed and is not therefore
strictly invariant in this sense. However, it is more coneanin what follows to use this
rather than the strictly invariant fordg or Iza, - by, and to allow for this distinction in the
form of the constitutive law. Note that#, - by = 0 then only the first of these two options
is appropriate, but in this cade depends oty , . . ., I7, specifically

2 =1+ Il + Is + Ir — (14 + I5), (3.9)

aformula givenin Merodio & Ogden (2006). Equation (3.9)atatines only the magnitude
of I5 in terms of the other invariants, not its sign.
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Constitutive modelling of passive myocardium 11

(b) Strain-energy function and stress tensors

Here we consider the material properties to be describedsbaim-energy functiod,
which is measured per unit reference volume. This depentlseodeformation gradiert
throughC (equivalently througli), which ensures objectivity. For such an elastic material
the Cauchy stress tenseris given by the formulas
ov _ a_\IJFT

for a compressible material (faf treated as a function df andE, respectively), which
are modified to P, P,
J— - f— R— T — .
a_FaF pl FaEF pl (3.11)
for an incompressible material, in which case we have thatcaimt.J = 1 (equivalently

I; = J? = 1) and this is accommodated in the expression for the stretiseblyagrange

multiplier p.

For an elastic material possessing a strain-energy funétithat depends on a list of
invariants, say, I, ..., Iy for someN, equations (3.10) and (3.11) may be expanded in
the forms v v

Ja_inpiﬁ, a—F‘Z vige —pl, (3.12)
i=1 i=1,i#3
respectively, where we have introduced the notation
ov .
wi—a—ji, 2—1,2,...,N, (313)

with ¢ = 3 omitted from the summation for the incompressible matexrad /5 omitted
from the list of invariants il in this case. Note thdtl; /OF = (01, /0E)F in terms of the
Green-Lagrange strain tensor. Note that the second PiolzhHoff stress tensd, whose
components were referred to in connection with figure 3,vsmgin terms of the Cauchy
stress tensor via the simple formua= JF'oF T, using (3.10) for a compressible
material and (3.11) for an incompressible material witk= 1. Explicitly, with E as the
independent variable, we have simply

s 0L o

B ST oE (1 +2E)7! (3.14)

for compressible and incompressible materials, respelgtiv

4. Review of existing constitutive models

For references to early work concerned with constitutiveletiing of the myocardium we
refer to papers by Yin (1981) and Humphrey & Yin (1987). SaVef the earlier models
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12 G. A. Holzapfel and R. W. Ogden

were based on linear isotropic elasticity, which is engirelppropriate in view of the dis-
cussion ing2(b). Equally, the early nonlinear models do not capturthalfeatures alluded
to. This is the case for certain invariant-based model$ydticg the isotropic exponential
form based on the invariat (Demiray, 1976).

(a) Transversely isotropic models

A number oftransversely isotropianodels have been proposed. These include the
model of Humphrey & Yin (1987), which is the sum of two expotials, one in/; and
one inly, specifically

U = cfexp[b(Iy — 3)] — 1} + A{expla(v/Is — 1)%] — 11, (4.1)

and contains four material parameterd), A, a. This was the first anisotropic invariant-
based model that took account of the fibre structure. Andthasversely isotropic model,
also based on the invarianks and 1, was constructed by Humphrey al. (1990). This
has the form

U = c1(VIi—1)?+eo(VIi—1)P+e3(I1—3) +ea(l1 —3) (v Ts— 1) +c5 (11 —3)?, (4.2)

and involves five material constants c», . . ., ¢5, values of which were obtained by No-
vak et al. (1994) from biaxial test data from the middle portion of timerventricular
septum and the inner, middle and outer layers of the latersdipe canine left ventricle
wall. As discussed if§2, it only subsequently became clear that the myocardiumti&n
transversely isotropic material (see, for example, Le€egtical., 1995).

The models referred to above are based on the assumptiocafhpressibility, but
the shortcoming referred to above also applies to the cossjinle transversely isotropic
model due to Kerckhoffst al. (2003), which has the form

U = ao[exp(alfl2 + a2f2) —1]+ ag[exp(a4Ef2f) — 1] +as(I3 — 1)2, (4.3)

and contains six material parametessa, . . ., as, wherel; and, are the principal in-
variants ofE and Ey; is the Green—Lagrange strain in the fibre direction. Theriavas ],
andl, are related to the principal invariantsand, of C defined in (3.5) by

. 1 A 1
I, = 5(11 -3), L= Z(IQ —2I + 3). (4.4

The first term in (4.3) represents the isotropic compondated to tissue shape change,
the second term relates to the extra stiffness of the mbietize myofibre direction, while
the third term is related to volume changes.

Other transversely isotropic models, based on use of theoopnents of the Green—
Lagrange strain tensor, were developed by Guccéira. (1991) and Costat al. (1996),
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but again do not reflect the morphology discussed above. @tepoth special cases of
the orthotropic model of Costt al. (2001) to be discussed below.

Some other models are structurally based. These includadide! of Horowitzet al.
(1988), which has the merit of being micro-mechanicallyiraied and inherently consid-
ers possible changes in the waviness of the fibres inducedtkltissue strain. On the other
hand, because of the integrations involved in the constituhodel, it is not well suited
for numerical implementation. It is also effectively tramssely isotropic.

The paper by Huyghet al. (1991) contains one of the few models that characterize the
passiveriscoelastidesponse of the myocardium. It regards the material as gplikegand
treats it as a biphasic (fluid—solid) model based on the ¢giresir viscoelastic constitutive
model due to Fung (1993), Section 7.6, and, to our knowleddbe only biphasic model
of the myocardium documented in the literature. The modeldeen implemented within
a finite element framework and applied to the left ventridi@ @anine diastolic heart in
Huygheet al. (1992). Of interest here is the solid elastic phase, whichtimnsversely
isotropic model involving seven material parameters. However, thteaaa refer to it as
orthotropic. That it is transversely isotropic can be seen from equdB&) in Appendix
B of Huygheet al. (1992) by noting that their strain-energy function is inaat under
interchange of the indices 1 and 2, and hence with respeatations about the 3-direction.

(b) Orthotropic models

Severalorthotropic models have been proposed in the literature. Some of these ar
inappropriate for modelling myocardial tissue, includihg Langevin eight-chain based
model of Bischoffet al. (2002), which, as pointed out by Schn@tial. (2008), does not
reflect the morphology of the myocardium.

In the remainder of this section we describe briefly threkairopic models that have
similar features in that they are partly structurally bagethting to the fibre, sheet and
normal directions, and partly phenomenological. This isedytle to the development, in
§5, of a general orthotropic invariant-based model, whiatudes these three models as
special cases.

Note that in the models listed under (i)—(iii) below the aa#iused the notatiof’;;
with 4, j € {f,s,n}, and, in particular, although,; = E;;, they expressed the off-diagonal
terms in the form(E;; + E;;)/2, i # j. Here, for compactness, we simply express this as
E;; in each case.
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14 G. A. Holzapfel and R. W. Ogden

(i) Strain-energy function proposed by Costaal.(2001)

The Fung-type exponential strain-energy function due tst&st al. (2001) is given as
U= %a(eXpQ -1, (4.5)

where
Q = bgE2 + by B2 + bun B2, + 205, B2 + 2b, B2, 4 2bg, B2

o (4.6)

which has seven material parameterandb,;, ¢, j € {f, s, n}. Interpretations were given
for the parameters but specific values were not provided.|Aady mentioned, trans-
versely isotropic specializations of this model (with 5 eré&l parameters) were used in

earlier papers by Guccioret al. (1991) and Costat al. (1996).

(i) Fung-type model proposed by Schratdil.(2006)

Another Fung-type model consisting of separate exporigeatias for each component
E;; was introduced by Schmet al. (2006) in order to decouple the effects of the material
parameters in the single exponential model (4.5), (4.6)h\42 material parameters, it is
given by

1 2 1 2 1 2
¥ = Saglexp(ba By) — 1] + Sam[exp(bmEf, ) — 1] + Sars[exp(brs Bgy) — 1]
1 1 1
+ §ann[eXP(bnnE§n) =1+ ians [eXP(bnsEr%s) =1+ §as [exp(bSSESQS) —1].(4.7)
We mention in passing another model with 12 parameters hndigo uses the compo-

nentsk;;, 4,5 € {f,s n}. This is the tangent model introduced in Schretdal. (2006);
see also Schmidt al. (2008). We do not consider this model here.

(iii) Pole-zero model proposed by Huntgral.(1997)

Motivated by the (equi-)biaxial tension tests of Smaill &ier (1991), Hunteet al.
(1997) proposed the so-callpdle-zerostrain-energy function, which has the form

— kﬂng kan?n knﬂEfm
lag — |Ef'f||bff lam — |Efn||bf“ |ann — |Enn||b“"

+

-~ (4.8)

|afs - |Efs||bfs |ass - |Ess

bss |ans - |Ens|

with 18 material parametets;, a;;, b;; i, j € {f, s, n}, and with the different components
E;; separated similarly to (4.7). As mentioned in Nash (19983 considered unlikely to
be suitable for other modes of deformation. Note that séd#farent forms of this model
appear in various papers with or without appropriate maglsigns, and in some cases
with b;; set equal to 2 for each j pair, as in Schmiet al. (2006, 2008).
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The relative performance of the above orthotropic modediting data of Dokot al.
(2002) was evaluated in Schmadlal. (2008), and we discuss this briefly§id.

5. A structurally-based model for the passive myocardium

Bearing in mind the fibre, sheet (cross-fibre) and sheet-abimyrmal) directions specified
in figure 1(e) and the definition of the invariaftin (3.6), we now consider the invariant
1, associated with each of these directions. We use the nosatio

Iy = fo - (Cfp), Iis =% - (Cs), Iin =ng - (Cng), (5.1)
and note that

S Lii=C:(fo@fo+s@s+ne®n) =C:l=1. (5.2)
i=f,s,n
Thus, only three of the invarianis, I, s, I, and/; are independent, and in the functional
dependence of the strain energy we may omit one of these.

On the basis of the definition (3H6\ve may also define invarianis, I, I ,, for each
direction. We shall not need these here, but we note thatdheyelated bys¢ + I55 +
I5,, = I? — 21I,. Additionally, there are the coupling invariants assaiatith the pairs of
directions. In accordance with the definition (3.8) we maitavr

Igts = Isst =To- (CS0), Igm = Ignt =To-(CNg), Isen = Igns = S - (CNp). (5.3)

In what follows we shall make use of these. In fact, it is nfftalilt to show thatl ¢, I5 s, I5
are expressible in terms of the other invariants via

I5f :Iff+j82fs+182fn7 I5S :I§s+182fs+1828n5 I5n :Iéfn+182fn+1825n7 (54)
and that
Iielyslyn — Iielg g, — InsIg gy — Iinl3e + 205 I3 alssn = I3 (5.5)

Thus, if the material is compressible there are seven inmtgrd invariants, while for an in-
compressible material there are six. These numbers comjithrthe eight (compressible)
and seven (incompressible) for the case of a material withrten-orthogonapreferred
directions. The orthogonality here reduces the numbenairiants by one.

Note that in terms of the componetfg;, i, j € {f, s, n}, of the Green-Lagrange strain
tensor used in several of the models discusset¥inve have the connectiody;; =
Iy; — 1,1 € {f,s,n} (no summation ovef) and2E;; = Ig;;, i # j. Thus, the general
framework herein embraces the orthotropic models disclissg! as special cases.
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Before we consider the most general case we note that for pressible material that
depends only on the invariants, I4¢, 14, I3, for example, the formula (3.12yields

JU:2wlB+2w4ff®f+2w4sS®S+ 21313l (56)

whereB = FFT, f = Ffy, s = Fsy, andiy; = 0¥ /0145, i = f,s. We shall also use the
notationn = Fng. The counterpart of the formula (5.6) for an incompresgifdgerials is

o =211B+ 20y f QF + 2004 ,5® s— pl. (5.7)

Note that here we have omitted the invaridnt rather thanly, I, or I,,. There is a
good physical reason for this choice, as we will explaifén

(a) Application to simple shear

Consider now simple shear in different planes and choosaxée so that the compo-
nent vectors are given by

[fo]=[1 0 0", [so]=[0 1 0]", [no]J=[0 0 1]". (5.8)
We now consider simple shear separately in each of the thaeepfs, sn, fn, and we

identify the indiced, 2, 3 with f, s, n, respectively (see figure 4).

(i) Shear in thds plane

We begin with simple shear in the fs plane and consider segwaishear in thé, and
thesy directions. For shears in tHg and thes, directions the deformation gradients have
components

0 10
Fl=y 0o 1 o |, [Fl=| v 1 0|, (9
0 1 0 0

respectively. For the shear in thedirection we obtain

1+92 vy 0
B] = v 1o |, f=f, s=qfots,  n=ng (510)
0 0

Iis = 1+ 92 Iy = I, = 1, the active shear stressdsy = 2v(¢1 + 45), and

013 = 023 = 0.
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(a)
No (fs)

(b) (d) (f)

No (sf) 1l (ns) No (nf)

fo fO fo

Figure 4. Sketches (a)—(f) of six possible modes of simpdasfor myocardium defined with respect
to the fibre axid, sheet axisy, and sheet-normal axigy: each mode is a plane strain deformation.
The modes are designateg)( i, € {f, s, n}, corresponding to shear in tlg¢ plane with shear in
the j direction. Thus, the first letter inj) denotes the normal vector of the face that is shifted by
the simple shear, while the second denotes the directiorhichathat face is shifted. The modes in

which the fibres are stretched are (fn) and (fs).

For the shear in thg, direction we have

1 ol 0
Bl=| ~ 1++2 0 |, f=fotrs, s=5%, n=ng, (5.11)
0 0 1

Iig = 1++2, 145 = 14, = 1, the active shear stressds, = 2v(11 + 4¢), and again
o013 = 093 = 0. Hence, the two shear responses in the fs plane are diffétetd that for
each of the above two casgg; = v andlgg, = Igs, = 0.
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(i) Shear in thesnplane

Next, we consider simple shear in the sn plane, considegpgrately shear in thg
andn, directions. Shears in thg and then, directions have deformation gradients with
components

1 0 0 1 0
Fl=1 o0 1 v |, [Fl=1| o0 1 0 |, (5.12)
0 1 y 1

respectively. For the shear in tegdirection we have

1 0 0
[B] = 0 1+'}/2 Yy ; f:f()a S= %, n:n0+’750a (513)
0 vy 1

Iy =14+2% Iis = I, = 1, the active shear stressdss = 2y, andos = 013 = 0.
For the shear in the, direction we obtain

1 0 0

Bl=1] o0 1 7y ., f=fo, S = so+7No, n=ng, (5.14)
0 ¥ 1++2

Lis = 14+ ~% I, = I, = 1, the active shear stressds; = 2v(¢; + 14,), and

o012 = 013 = 0. Hence, the two shear responses in the sn plane are difféletat that for
each of the above two casés,,, = v andlgg = Igg, = 0.

(iii) Shear in thén plane

Finally, we have simple shear in the fn plane. For shearsafytandn, directions the
deformation gradients are

0 ol 0
Fl=1 o0 1 o |, [F=] o 1 0 |, (5.15)
0 0 1 0 1

respectively. For the shear in thedirection we have

1++2 0 ol
[B] = 0 1 0 ) f ="y, S= 9, n= n0+7f0, (516)
ol 0 1

Iy, =1++2 I = Iy = 1, the active shear stressdss = 2y, andos = o3 = 0.
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For the shear in they direction we have

1 0 v
[B] = 0 1 0 : f = fo+vyno, S=5, n=ng, (5.17)
y 0 1+’}/2

Lig = 1+~% L5 = I, = 1, the active shear stressdss = 2v(¢1 + 4¢), and
o012 = 093 = 0. Hence, the two shear responses in the fn plane are diffédere that for
each of the above two casgg,, = v andlgg = Igsy = 0.

Clearly, the (nf) and (ns) shear responses are the sameewlgenow recall that we
use the notationi() to specify that the shear is in thalirection in theij plane, withi, j €
{f,s,n}. In these two cases there is stretching alongitheirection but not along thi or
S directions. The (sn) and (sf) shear responses are alsorties gath no stretching along
thef, or ng directions, and, finally, the responses are also the sanhe iis tand fn planes,
with stretching along the fibre directidp in these cases. It should be emphasized that in
the above the order of the indicéand; in (ij) (when referring tashearor responsgis
important, but without parenthesis,iify the order is not relevant (when referringiane.

The data of Dokost al.(2002) indicate that the shear response is stiffest whefittree
direction is extended, least stiff when the normal diretigextended and has intermediate
stiffness when the sheet direction is extended. This isatefteby the above formulas for
the shear stressesiif, s > 145 > 0. However, the data also show that there are differences
between the (fs) and (fn) and between the (sf) and (sn) regsowhich are not captured by
the above model; the data show also that the (nf) and (nspmesp are indistinguishable.
A possible way to refine the model in order to reflect thesetiffices is to include in the
strain-energy function one or more of the coupling invasatefined in (5.3). Bearing in
mind that the most general strain-energy function depentisan seven invariants for a
compressible material we may select, for examplels, I3, I4¢, 145, Is s, Is tm, in Which
case the Cauchy stress (5.6) is given by

Jo = 201B + 2tp5(I[1B — B?) 4 2I31p3l + 2up4¢f @ f + 204,S® s
+Ysis(fRs+s®f) +vsm(fRN+naf). (5.18)

We emphasize that the invarianfs;, and Isg, appearing in (5.18), and alsk ., de-
pend on thesenseof fy, sy andng, i.e. they change sign if the sense of one of the vec-
tors is reversed. Howevet; should be independent of this sense and this is accommo-
dated by an appropriate functional dependence. For exaifiple write \i/(..., 2., ..) =

U(..., Ists, ...) thenysgs = 26@/8(I§fs)lg ¢ and for shear in the fs plane we hakg, =

f - s = ~ for either direction of shear, and this vanishes in the efee configuration, as
doesys s providedV is well behaved as a function dgfs (which we assume to be the
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case). Similarly/s ¢, = f - n =+ for shear in the fn plane anlds,, = s- n = ~ for shear
in the sn plane.
In view of the above, in the reference configuration equattob8) reduces to

2(¢1 + 292 + P3)l + 20hasfo @ fo + 200455 @ S = 0, (5.19)

assuming the reference configuration is stress free, anddni only hold if

Y1+ 202 + Y3 =0, tPar =0, Pss=0. (5.20)

Thus, these conditions must be satisfied along with

was = 1/J8fn =0 (521)

in the reference configuration.
For an incompressible material (5.18) is replaced by

o = 201B + 2¢5(I1B — B?) — pl + 2¢4¢f @ f 4 21p4,8® S
+Ysi(f@s+s@f) +Ygm(f@n+nef), (5.22)

and only the six invariantg , I, I, 145, Is 55, Is ¢ remain. In this case, the conditions that
must be satisfied in the reference configuration are as ab@mepefor the first in (5.20),
which is replaced by + 445 — py = 0, wherep is the value ofp in the reference
configuration.

For simple shear in the fs plane the termyigg contributesys ¢ to o2 for shear in
either thefy or 5y direction but does not contribute if the shear is in eitherfthor the sn
plane. The term injg ¢, similarly contributes)s ¢, to 013 for shear in either th& or ng
direction in the fn plane. And since, as noted above, themtdgrece ofl is on the square
of each of these invariants these two terms each involvetarfaty.

In summary, the shear stress versus amount of shear equifiighe six simple shears
enumerated in (i)—(iii) are given by

(fs): ot = 2(¢1 + Y2 + Yar)y + Vs, (5.23)
(f): om = 2(¢1 + Y2 + Yar)y + Vs, (5.24)
(sf): ot = 2(¢1 + 2 + as)y + Usis, (5.25)
(sn): 0w = 2(¥1 + 2 + Yus)y, (5.26)
(nf): om = 2(¢1 + Y2)y + Vs, (5.27)
(ns): own = 2(¥1 +1b2)7. (5.28)

It is worth remarking here that since simple shear is a pltnainsdeformation the invari-
antsl; andl, are identical and the effects ¢f andq, cannot be distinguished.
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(b) Application to biaxial deformation

Several experiments have been conducted using biaxial desthin sheets of tissue
taken from planes parallel to the endocardium. Such spexsiaue purportedly from within
a sheet containing the fibre axis and the in-sheet axis. Tdreseferred to as the fibre and
cross-fibre directions. Note, however, that according ¢ostinucture discussed §2, such
specimens are in general unlikely to contain a specific migoshieet, so care must be
exercised in interpreting such biaxial data.

Consider the pure homogeneous deformation defined by

r1 = MX1, T2=AX2, w3=AX3, (5.29)

where ¢, \g, A\, are the principal stretches, identified with the fibre, steet normal
directions, respectively. They satisfy the incompresgtiondition

AtAsAn = L. (5.30)

When the deformation (5.29) is applied to a thin sheet ofiigsarallel to a sheet with
no lateral stress there is no shear strain and hénge= 0, i # j € {f,s,n}, andys;; =0
correspondingly. Equation (5.22) then has only three carapts, namely

o = 201 A7 + 202(A2 + AD)AF + 20 AP — p, (5.31)
Oss = 201 A2 + 2ho (X% + AD)AZ + 2u A2 — p, (5.32)
0 = 20122 + 25 (A2 + AHA2 —p. (5.33)

Elimination ofp by means of (5.33) allows (5.31) and (5.32) to be expressed as

og = 201 (AF — A2) + 20222 (A — A2) + 2045 )f, (5.34)
s = 201(A2 = A2) 4 202 AF (A — A7) + 2004 A2 (5.35)
If we omit the dependence on the invaridpthen the latter two equations simplify to
or = 201 (Af — AZ) + 2040 )], (5.36)
Oss = 2001 (A2 — \2) + 204 A2 (5.37)
(c) A specific model

In order to decide which of the invariants to include in a jgatar model we now exam-
ine interpretations of the invariants. First, we includesatropic term based on the invari-
ant ; since this can be regarded as associated with the undergingollagenous and
non-muscular matrix (which includes fluids). This could bedelled as a neo-Hookean
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Figure 5. Schematic representation of the arrangement stimwand collagen fibres and the sur-
rounding matrix: (a) unloaded structure; (b) structurearrdnsile load in the muscle fibre direction,
showing decreased inter-fibre separation so that the esllagtwork bears load primarily in the
muscle fibre direction; (c) structure under compressive oathe muscle fibre direction, showing
the muscle fibres buckled and lateral extension of the cetlagetwork.

material, as in the case of arteries (Holzagfehl., 2000), or as an exponential (Demiray,
1972), for example.

A schematic of the embedded collagen-muscle fibre strugsikown in figure 5 for
the unloaded configuration and, separately, for configumatsubject to tension and com-
pression in the direction of the muscle fibre (cardiac myecyfhe collagen fibres illus-
trated in figure 5 are thought to represent both the endofrgysibthe perimysial collagen
fibres, as briefly described §2(a). Figure 5(b), in particular, shows the configuration in
which the tensile loading is in the muscle fibre directioneThuscle fibres are extended
and the inter-fibre distances are decreased while the eoitags network offers little resis-
tance laterally but does contribute to the exponentiatyéasing stress in the muscle fibre
direction. For tensile loading lateral to the muscle fibfeer¢ is also exponential stress
stiffening, which can be thought as being generated by itecemt of the collagen net-
work. Figure 5(c) depicts the tendency of the muscle fibrdsuitkle under compressive
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load in the muscle fibre direction and stretched collagessfibres, i.e. the lateral inter-
fibre connections as well as the woven perimysial networkstnetched. It is suggested
that the lateral stretching of the collagen fibres contebub the observed relatively high
compressive stiffness of the myocardium.

To reflect the stiffening behaviour in the muscle fibre di@ttas shown by exper-
imental tests (see, for example, figures 2 and 3) it is ap@EtEpto use an exponential
function of I,¢. Similarly, for the sheet direction transverse to the maditires; in this
direction the stiffening is in part associated with the agén fibres connecting the muscle
fibres, as discussed above. For this direction we use an erfiahfunction of the invariant
1. Clearly, these terms contribute significantly to the slazrergy when the associated
directions are under tension. However, when they are uratepoession their contribution
is minimal since the fibres do not support compression. Ferrfason we include these
terms in the energy function only if,s > 1 or I, > 1, as appropriate. Sindg ,, depends
only, Iys andly we do notinclude it separately and therefore tensile andpcessive be-
haviour in the normal direction is accommodated by the terf i These three invariants
are sufficient to model the tension/compression behavémut there is no need to include
1>. Indeed, they are also sufficient to characterize the basitifes of the shear test results
of Dokoset al. (2002), which we will demonstrate in the following subsenti

As far as the more detailed shear behaviour is concernefigsee 2) it is necessary to
make use of one or more of the invariafgs;. In view of the exponential trends shown in
figure 2, particularly for the curves (fs) and (fn), we chotisese an exponential function
also for this part of the characterization. In particulamce the (nf) and (ns) curves are
not distinguished (see figure 2) it turns out that we neediden®nly the invariantly ¢
associated with stretching of the fibres, and Ret or Is 5,. The above considerations lead
us to propose the energy function given by

a a; 2 afs 2
U = % exp[b(I; — 3)] + Z % {exp[bi(l4s — 1)’ — 1} + o lexp(besISs) — 1],

i=f,s

(5.38)

wherea, b, ag, as, by, bs, ags, bgs are eight positive material constants, thearameters hav-
ing dimension of stress while thie parameters are dimensionless. This consists of the
isotropic term inly, the transversely isotropic terms I and I, and the orthotropic
term in Ig . Note that if we do not distinguish between the (fs) and (fm) between the
(sf) and (sn) responses then only six constants are needed.
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From equation (5.22) this yields the Cauchy stress

o = aexp[b(I; — 3)|B — pl + 2a¢(I4¢ — 1) exp[bs(Iys — 1)*f @ f
+2a5(I4s — 1) expbs(I4s — 1)?]S® S+ agIg s exp(brs I3 1) (f @ S+ 5@ ).
(5.39)

In the following subsection we apply this specific strairesgy function to both biaxial
and shear test data and discuss the results in detail.

(d) Fit of the Yinet al.(1987) and Dokost al.(2002) data

In this subsection we show the efficacy of the proposed mamditfing data on the
myocardium. First, we use the simplified model based on treetmvariantdy, I, 145
for which the Cauchy stress is given by (5.39) with the finant@mitted. The resulting
fit with the mean of the loading curves for positive (fs) anal) @nd for positive (sf) and
(sn) shears, as well as the common curve for positive (nf)(aggshears, extracted from
figure 2, is shown in figure 6. Clearly, this simple model rafiebe general characteristics
of the distinct shears in the different directions, whiclemyplify the orthotropy. It is also
worth noting that if the isotropic term is replaced by the +tmokean termu(7; — 3)/2
the fit is still relatively good, although the shear stressus amount of shear is then linear
for the (nf)—(ns) plot. We do not show this plot. The data shawfigure 2 indicate that the
response for negative shears is very similar to that fortipesshear (with reversed sign of
the amount of shear and shear stress). Fitting the negéitdar slata along with those for
positive shear would have a minor effect on the values of thiediparameters.

Second, with this as a starting point we now refine the fittipgbluding the final term
in (5.39) which allows the (fs) and (fn) and the (sf) and (do}$to be separated according
to figure 2. The resulting fitis shown in figure 7 and indicateigngood agreement between
the model and the experimental data. As mention€gi®(ib), we have reversed the labels
fn and fs compared with those in Dokesal. (2002). This is because all the other curves
in the latter paper show that the (fs) shear response isrstifan that for (fn). This indeed
makes sense since the stiffnesses in the f, s and n direetieyss noted previously, ordered
according to > s> n. Thus, the (fs) shear response is expected to be stifferttiea(fn)
response. Equally, the (sf) response is stiffer than therésponse. It is also suggested
that the (nf) response should be stiffer than the (ns) respaathough there is no clear
distinction seen in figure 2. Other data shown in Dokbsl. (2002) do indeed show a
small separation in the sense just indicated. The valudseofiiaterial parameters for the
fits shown in figures 6 and 7 are summarized in table 1.

Article submitted to Royal Society



Constitutive modelling of passive myocardium 25

16
(fs)
14 o Experimental data
— Model
12 (fn)
=10 ~
[a W}
A
3
5 8
[72])
@
(O]
» 6 o (sf)
4 -
sn
-0 (sn)
27 (nf).(ns)
0 p——L—f
0 0.1 0.2 0.3 0.4 0.5 0.6

Amount of shear
Figure 6. Fit of the model (5.39) with the final term omittedhe experimental data for the loading
curves from figure 2: (nf)—(ns) and mean of the loading cufeegfs) and (fn) and for (sf) and (sn).
The material parameters used are given in table 1.

Next, we use the model (5.39), specialized for the biaxiadenaf deformation accord-
ing to equations (5.36) and (5.37), to fit the experiment#h adotained from Yiret al.
(1987) and shown in figure 8. The associated material pasamate summarized in the
last row of table 1.

We are using here the biaxial data of ¥ahal.(1987) for illustration purposes since, to
our knowledge, they are the only true biaxial, as distinatrfrequibiaxial, data available.
However, these data have limitations, and in, particulahould be noted that they do not
provide information in the low strain region (betwe®and0.05). This highlights the need
for more complete biaxial data. The fit presented in figure thésefore rather crude but
can be improved if required by changing the isotropic tere,thel; function, and/or by
including an activation threshold to accommodate the ‘tegion. Whether or not this is
done it is important to recognize that the biaxial data of &ral. (1987) can be captured
by a transversely isotropic specialization of the modet. the model used here, as can
be seen from table 1, only four material constants (with= 0) are required. Hence,
the biaxial data alone appear to suggest that the matertigrisversely isotropic. Since
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Figure 7. Fit of the model (5.39) to the experimental datétlierloading curves from figure 2 with
separate (fs), (fn), (sf), (sn), and (nf)—(ns) not distispad. The material parameters used are given

in table 1.

Table 1. Material parametets b, as, bt, as, bs, ass, bgs for the energy function (5.38) used to fit the
simple shear data for myocardium (Dokatal., 2002) in figures 6 and 7 and the biaxial tension data

Experimental data

— Model

(Yin et al,, 1987) in figure 8

Amount of shear

Experimental datd| a b as bs as bs Qs bes

(kPa) | () (kPa) () (kPa) | () (kPa) | ()

Shear, Fig. 6 0.057 | 8.094 | 21.503 | 15.819 | 6.841 | 6.959 — —
Shear, Fig. 7 0.059 | 8.023 | 18.472 | 16.026 | 2.481 | 11.120 | 0.216 | 11.436

Biaxial, Fig. 8 2.280 | 9.726 | 1.685 15.779 — — — —

this conflicts sharply with the shear data, care must be takdrawing conclusions from
biaxial data alone. Additional experimental tests are iregu For a fuller discussion of the
theory underpinning planar biaxial tests for anisotromalmearly elastic solids we refer

to Holzapfel & Ogden (2009b).
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Figure 8. Fit of the model (5.39) to the experimental datagfrié 3 (extracted from Yiet al.,, 1987)

for three different loading protocols for biaxial loadingthe fs plane: (a) stress: against strain
Ex in the fibre direction; (b) stresSss against strainFss in the sheet (cross-fibre) direction. The
three sets of experimental data are indicated by triangtpgares and circles, while the continuous
curves represent the fitted model. The biaxial data can kermeapby a transversely isotropic model,
and hence only four material constants are required to fid#tae. The material parameters used are
given in table 1.

6. Convexity and related issues

In Holzapfel et al. (2000) we discussed the important issue of convexity of thars
energy function and its role in ensuring material stabidibd physically meaningful and
unambiguous mechanical behaviour. It is also importarftfierishing desirable mathemat-
ical features of the governing equations that have, in @aletr, implications for numerical
computation (see also Holzapflal,, 2004; Ogden, 2003, 2009, for further discussion of
convexity and related inequalities). For the discussiam llee form of the strain-energy
function (5.38) has particular advantages since it is the stiseparate functions of dif-
ferent invariants, with no cross terms between the invégiavolved. This enables the
convexity status of each term to be assessed separatelyalVéherefore consider in suc-
cession the three functiot3(1 ), G(I4r) andH (Isss) as representative and examine their
convexity as a function of the right Cauchy-Green terSor
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(i) The functionF (1)

First we note that

0F(I)
oC

0?F (L)
oCoC

= F (), = F(L) . (6.1)

Local convexity of (I ) as a function oC requires that

82.7:(11) 11 2

P = > .
5CHC [AJA] = F'(I)(trA)* >0 (6.2)

for all second-order tenso#s, from which we deduce that” (I;) > 0. Note that strict

convexity is not possible sinc& can be chosen so thatAr= 0. For the exponential

function considered in (5.38), i.e.
F(h) = g{explb(hy = 3)] - 1}, (63)

this yieldsab > 0. For a nontrivial function, however, we must havie > 0. It is also
easy to see that for the stress response (in simple tensicexdample) to be exponentially
increasing in the corresponding stretch we must hiaye 0. Thus, we have: > 0 and
b> 0.

(i) The functionG(I,¢)

ForG(I4¢) it follows from the definition ofl, ¢ in (5.1), that

g 0%G
Erol G'(Int)fo ® fo, 7CC = G"(Iye)fo @ fo @ fo @ fo. (6.4)
Local convexity ofG(1,¢) requires that
329 — ! 2

for all second-order tensofs. It follows thatG is convex inC providedG” (I4¢) > 0.
For the exponential form

G(Lar) = g{explbe(Tas = 1)’ ~ 1} (6.6)
£
we obtain
g/(I4f) = CLf(I4f — 1) exp[bf(I4 f— 1)2], (67)
G"(Iss) = asexplbe(Lis — 1)*{1 + 2b¢(Ls¢ — 1)} (6.8)

For extension in the fibre direction we hakg > 1, and from (6.7) we deduce that for the
material response associated with this term to stiffen énfitbre direction we must have
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as > 0 andbs > 0. Moreover, these inequalities imply th@t (Z4¢) > 0 and hencdj is
a convex function (both in tension and compression). It carstown similarly that the
separable Fung-type model (4.7) is convex if the materiastants it contains are positive.
Since the pole-zero model (4.8) is separable it can be ttemid¢he same basis. For
example, if we consider just the first term in (4.8) we may @&vrit
ke EZ%
~ Jag — [Eal [P

G(Iar) (6.9)

wherel s = 1 + 2FEg, and, withkg > 0, ag > 0 andbg > 0 it is straightforward to show
that this is convex for alEg if 0 < bg < 1 or bg > 2. However, it is convex for alEg
such that E| < ag (which is a necessary restriction) irrespective of the eafbg > 0.
Although the calculations are somewhat different (bec#useontributions of the dif-
ferent componentd’;; are not separable) it is also easily shown that the Costa Imode
(4.5)—(4.6) and similar Fung-type models are convex if thefficientsb;; are positive.
By contrast, some models are not in general convex, as isatbe with the model (4.2)
because of the influence of the term cubig/fy — 1 and the coupled term ify and..

(iii) The functior{(Is )

Similar results hold fofH (g ). Using the definition (5.3)we calculate

oH 1
ac = §H/(I8fs)(fo®50+so®fo) (6.10)
and
82—H*lg”(l Y(fo®@ s+ @) @ (fo @S0+ 5 @ Fo) (6.11)
9CaoC 1 8fs)(To ® S + S X To 0¥ S +SHXTp). .

For an arbitrary second-order tengowe have

O*H

SCHC A A] = H (Is ) [(Afo) - %, (6.12)

and for convexity this must be non-negative for &ll Thus, is convex inC provided
H”(Igfs) > 0.
For the exponential form

Qs

H(lgs) = 2b; [exp(bfslgfs) — 1} (6.13)
we obtain
H (Ists) = ags explbs(Is s — 1)%](1 + 2bgI24,) (6.14)

so convexity is guaranteeddf; > 0 andbg > 0.
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In the above discussion based separately on the invarianfs; and Iy ¢, we have
examined only the convexity of individual terms that cdmite (additively) to the strain-
energy function. If each such term is convex then the ovetadiin-energy function is
convex. Note, however, that it is not necessary that eadn coiatribution be convex pro-
vided any non-convex contribution is counteracted by theverity of the other terms.
The analysis of convexity is relatively straightforward focompressible material, but for
an incompressible material more care is needed becausedhati components dE are
independent. For discussion of different aspects of cdhwesee, for example, Holzapfel
et al.(2000), Ogden (2003) and Ogden (2009).

(iv) Strong ellipticity and other inequalities

The notion of convexity is different from, but closely raddtto, aspects of material
stability, for discussions of which in the context of the mauics of soft biological tis-
sues we refer to Holzapfel al. (2004), Ogden (2003) and Ogden (2009), for example,
and references therein. Whether of not teng ellipticity conditionholds is one issue
that arises in consideration of material stability. If itlth@then the emergence of certain
types of non-smooth deformations, for example, is predudéer three-dimensional de-
formations analysis of the strong ellipticity conditiordigficult, especially for anisotropic
materials such as those considered here. Necessary araesifionditions for strong
ellipticity to hold for isotropic materials are availablerfthree dimensions but are very
complicated; in two dimensions they are much more transpabet their counterparts,
even for transversely isotropic materials, are not avilaBor plane strain deformations
the strong ellipticity condition has been analyzed in soraitl by Merodio & Ogden
(2002) and Merodio & Ogden (2003), respectively for incoagsible and compressible
fibre-reinforced elastic materials. Here we focus our bdistussion on the anisotropic
contributions to the strain-energy function.

If we consider the terrg (1, ¢), for example, on its own then (Merodio & Ogden, 2002)
strong ellipticity requires that the inequalities

G'(Isg) + 214¢G" (Is5) > 0, G (L) >0 (6.15)

hold. From (5.22) and the formufaf = I, ¢, which comes from (5.1) it can be seen that
the component of Cauchy stress in the fibre direction is gwelV, ¢ G’ (I4¢). For this to be
positive (negative) whe,y > 1 (< 1) we requireG’(I4¢) > 0(< 0), which means that
strong ellipticity does not hold under fibre compressiois(ihthe case for the exponential
model; see equation (6.7)). In the context of arterial wadichmnics (see, for example,
Holzapfelet al, 2000) this problem is circumvented by recognizing thatfthees tend
to buckle in compression and do not support compression ignéfisant degree, so that
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the termG(1,¢) can be considered to be inactive whan < 1. Even if this term is not
dropped for compression in the fibre direction its tendendgad to loss of ellipticity is
moderated to some extent by the other terms in the strairggrfienction. Turning now
to the first inequality in (6.15) we note that this is equival® requiring that the nominal
stress component in the fibre direction be a monotonic fanatif the stretch/I,; in
that direction, as shown by Merodio & Ogden (2002), whichdesistent with the typical
stiffening of the stress response of the fibres.

The situation with regard t®{(Is ) is more delicate since, on its own, it can violate
strong ellipticity in either tension or compression andegyaily has a destabilizing influ-
ence (Merodio & Ogden, 2006). Here we examine its behaviousimple shear. With
reference to (5.22) we note that{ Is ;) contributes the terr’ (Is ) (f ® s+ s® f) to the
Cauchy stress. For the simple shear (sf) in the fs plane, we hiavef, ands = ~fy + 5,
wherels s = v is the amount of shear; s§B(a)(i). The component of the shear stress on
the plane normal to the initial directiag is then simplyo12 = H'(Is ), and we require

H'(y) 20 accordingas v = 0, (6.16)

for the shear stress and strain to be in the same directiothdfmore, if we require,
to be a monotonic increasing function pfthen we must havét”(Is¢) > 0, which is
consistent with the requirement of convexity in (iii) above

7. Discussion

In order to understand the highly nonlinear mechanics o€timeplex structure of the pas-
sive myocardium under different loading regimes a ratilyriadsed continuum model is
essential. In the literature to date models of the myocandiave been mainly of poly-
nomial and/or exponential form, an important exceptiombehe pole-zero model (4.8).
Many of the models, including recently published ones, Haeen based on the assump-
tion of transverse isotropy, and are not therefore able pouca the orthotropic response
illustrated in the shear data of Dokesal. (2002) on the myocardium. Moreover, not all
of these are consistent with convexity requirements natefbj an example of such is
(4.2), as mentioned i§6. As for the orthotropic models presentedsi(b) we have al-
ready noted the common feature that they are expressedns t#rthe components of the
Green-Lagrange strain tensor and that these particulgp@oemts are also expressible in
terms of the invariants. Thus, they all fit within the gendraimework we have outlined in
§5. Note, however, that none of them has an explicit isotropittribution.

While the Costeet al. (2001) model (4.5)—(4.6) has seven material parameters the
model (4.7) has 12 and the pole-zero model in its most gefaeral(4.8) has 18. However,
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the first of these three models has the disadvantage thaataenpters are highly coupled
and hence difficult to interpret in terms of the myocardiunucture. As pointed out by
Schmidet al. (2008) the parameter estimation process for the strainggrfenction of
Costaet al. (2001) was reliable, while for (4.7) and the special casedd)(with 12 pa-
rameters the process was unstable and required more soaieidtstrategies, as outlined in
their paper. It should be pointed out that, in general, lsgsares optimization procedures
with large numbers of parameters can lead to non-uniquarfgssrameter sets because
of sensitivity to small changes in the data (see, for exanptplag, 1993, Section 8.6.1).
Another common feature is that the orthotropic models we@here are somewhat
hocin nature and were constructed without the benefit of the gnmderlying theory
such as that described #%. Nevertheless, in spite of some shortcomings, incluckag |
of convexity in some cases, these models have certainly lbepful in establishing some
understanding of the biomechanics of the myocardium.

The specific constitutive model proposed in (5.38) has b&éews to describes the
general characteristics of the available biaxial dataivelly well and to fit the available
shear data very well. This is a model with only four invargtitat is included within the
general framework based on six independent invariantsrfan@ompressible orthotropic
material, which the myocardium is considered to be. A palticmerit of the invariant
theory is that it is geometry independent and requires kedgg only of the local pre-
ferred directions in the material. Moreover, it is relaljveasy to implement within a finite
element environment, as is the case with the invariantebas®lels for arteries (see, for
example, Holzapfel, 2000). The three-dimensional orthgtr model is based on a struc-
tural approach in that it takes account of the morphologitraicture through the muscle
fibre direction, the myocyte sheet orientation and the sheehal direction and considers
the resulting macroscopic nature of the myocardium. Indéisse it is not considered to be
a micro-mechanically based model. The particular form efriftodel adopted here uses a
set ofeightmaterial parameters whose interpretations can be bastg gathe underly-
ing histology. This number can be reducediteif the neo-Hookean model is used as the
isotropic term for fitting the biaxial data or for illustrag basic features of the different
simple shear modes. Construction of the model has beenlgfaeilitated by the clear
structure of the stress—deformation equations that fofiom the general form (5.22) and
its specializations such as (5.23)—(5.28). Furthermbeentodel introduced here is consis-
tent with standard inequalities required from consideratiof convexity, strong ellipticity
and material stability.

Although some aspects of the passive mechanical respotise wfyocardium seem to
be well known, a carefully literature survey shows that ¢here insufficient experimental
data available, and there is therefore a pressing need fog dada to inform further de-
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velopment based on the framework discussed in the presekt iaderms of the need to
simulate the response of the myocardium structure, thestemtin our work is to develop
a numerical (finite element) realization of the model. Beytmat, with the need for more
data emphasized, the constitutive model for the passivavi@lr of the myocardium pro-
posed herein may serve as a robust basis for the developinerare advanced coupled
models that incorporate, for example, active response ¢imwesntraction), signal trans-
duction and electrophysiology.

The authors wish to thank Thomas Eriksson for his helpful mamts on this work and
for performing the curve fitting. Financial support for thiesearch was partly provided
through an International Joint Project grant from the R@adiety of London. This support
is gratefully acknowledged.
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